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1. Introduction

Denote by D, = {0, 5, 5. .- .. ;ﬁ% 1} the domain of a
k-valued logical variable (for convenience, D = D,). Letx; € Dy,
i=1,...,n,be k;-valued logical variables:

n
fGox) [ [ D6 = D (1)

i=1
is called a multi-valued logical (MVL) function (see Fig. 1(a)). When
ki =k i=0,1,...,n,itis called a k-valued logical function. In
addition, if k = 2 it becomes a Boolean function.

MVL functions have been investigated and applied to various
research areas such as data mining (Files & Perkowski, 1998;
Zupan, Bohanec, Demsar, & Bratko, 1998), game theory (Zhao,
Li, & Cheng, 2011), and circuit theory (Hachtel & Somenzi,
2002). For instance, digital circuits that are realized by MVL
functions have some advantages over the dominatingly used
Boolean functions (Miller & Thornton, 2007). Moreover, although
MVL functions can be merged into Boolean functions by proper
encoding (Didier, Remy, & Chaouiya, 2011; Mishchenko & Brayton,
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2002), unnecessary complexity would be brought in along the way
and fundamental difficulties still exist (Lang & Steinbach, 2003).
Therefore, the study of the properties of MVL functions has its own
importance.

Let {X;, X2} be a partition of X = {xq,xa, ..., X,}. If f can be
expressed as

fX) =F@X), ¥(X2)), (2)

then f can be realized in a disjoint bi-decomposed form as in
Fig. 1(b). Let {X1, X5, X3} be a partition of X. If f can be expressed as

f(X) = F(¢(X17X2)a W(X27X3))a (3)

then f can be realized in a non-disjoint bi-decomposed form as in
Fig. 1(c). Here, F, ¢, i are all MVL functions, where ¢, ¥ are called
the decomposition functions, and F is called the operator function
or a gate. Throughout this paper we assume ¢(-), ¥ (-) € Dy,, and
therefore F is called a kq-gate to emphasize the output cardinality.

The decomposition of MVL functions is a useful technique
because it can reduce the complexity of the problem involved and
reveal the intrinsic structure of the functions. In circuit theory,
the decomposition of logical (switching) functions can significantly
improve circuit performance in terms of chip area, operation
speed and power consumption. Therefore, it is a long standing
research topic since 1950s, and there are some interesting and
useful results. For Boolean functions, when the number of inputs of
a switching circuit is small, the Quine-McCluskey procedure was
widely used for designing a two-stage network (Davio, Deschamps,
& Thayse, 1978), while when a large number of inputs is involved,
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Fig. 1. (a) MVL function, (b) disjoint decomposition, (c) and non-disjoint

decomposition.

the decomposition chart method to multi-level minimization was
proposed by Ashenhurst (Ashenhurst, 1957) and was further
discussed by Curtis (Curtis, 1962), with related efficient algorithms
developed later by many other authors (Karp, 1963; Mishchenko,
Steinbach, & Perkowski, 2001; Posthoff & Steinbach, 2004; Sasao,
1999). As for MVL functions, Hurst (1984) gave an overview
of MVL functions, Lang and Steinbach (2003) discussed the bi-
decomposition for the min- and max-operators through MVL
differential calculus, and we refer the reader to Brayton and Khatri
(1999) and Vykhovanets (2006) and references therein for more
details.

This paper focuses on the theoretical aspect of bi-decomposition
of MVL functions and its byproduct—the global implicit function
theorem (IFT) and its application to the normalization of Boolean
networks. In this paper, we first provide easily verifiable neces-
sary and sufficient conditions for both disjoint and non-disjoint
bi-decompositions of MVL functions. Using the bi-decomposition
result, a global IFT for k-valued functions is obtained, which can be
seen as a special kind of bi-decomposition. Finally, the above re-
sults are used to convert a dynamic-algebraic (D-A) Boolean (con-
trol) network into its standard form, which makes the tools and
results developed for MVL (control) networks applicable to D-A
Boolean (control) networks.

The basic tool for our approach is the semi-tensor product (STP)
of matrices and the matrix expression of logic (Cheng, Qi, & Zhao,
2012).1t has been successfully applied to the analysis of topological
structure of Boolean as well as general logical networks (Cheng,
2009; Cheng & Qi, 2010a) and the synthesis of logical control
networks (Cheng, 2011; Cheng & Qi, 2009, 2010b; Cheng, Qi, &
Li, 2011; Laschov & Margaliot, 2011; Li & Sun, 2011). The key
technique of this approach is converting an MVL function into
its algebraic form, which allows the application of matrix and
analyzing tools for discrete-time systems to MVL dynamic systems.

The rest of this paper is organized as follows. Section 2 is a
survey for STP and the matrix expression of MVL functions. Only
limited concepts and results, which are used in the sequel, are
introduced. Section 3 considers the disjoint bi-decomposition of
MVL functions. Non-disjoint bi-decomposition of MVL functions
is discussed in Section 4. Necessary and sufficient conditions are
presented for each case. Section 5 presents a global IFT for k-valued
functions which is considered as a special bi-decomposition. In
Section 6, the IFT is used to converting a D-A Boolean network into
its normal form. Section 7 consists of some concluding remarks.

2. Matrix expression of logic

For statement convenience, we first introduce some notations.

® Muxn: the set of m x n real matrices.

e Col;(A): the i-th column of matrix A.

° Sﬁ := Coly(I,) where I, is the n x n identity matrix.

o Ap:={3],....8" A= A,

e Amatrix A € Muxm is called a logical matrix if its columns
Col(A) C A,.The set of n x m logical matrices is denoted by
ccnxm-

e LetA € L,«m. Then it is compactly expressed as

A=[811,82, .. 8m] = 8,[i1, 0z, ..., in].
e A =diag(Aq, ..., A;) is the block diagonal matrix of which the
i-th diagonal block is A;.

Definition 1 (Cheng & Qi, 2010b). Let M € Mpmxn and N € Mpyq.
The semi-tensor product of matrices, denoted by M x N, is defined
as

M x N = (M®In) (N®I,), (4)

where s = lcm{n, p} is the least common multiple of n and p; ® is
the Kronecker product of matrices.

Remark 2. When n = p, STP coincides with a conventional matrix
product. So STP is a generalization of a conventional matrix prod-
uct, and all the properties of the conventional matrix product (such
as the associativity and distributivity) remain correct.
Throughout this paper the matrix product is assumed to be STP.
In the sequel, the symbol x is omitted when there is no confusion.

Some new properties of STP, which are used in the sequel, are
given here for convenience.

Proposition 3 (Chenget al, 2011).

(i) Let x € R* be a column vector and A a given matrix. Then

xA = (I ® A)x. (5)
(i) Letx € A Ry == 8,2[1, k42, ..., (i—Dk+i, ..., k] € L2,
Then
x* = Rex. (6)

Next, for any integer k (k > 2), we identify ﬁ ~ Sf’i,i =
0,1,...,k — 1. Then x € Dy has its corresponding vector form
(still denote it by x) x € Ay. Accordingly, the MVL function f in (1)
becomes f : []i_; Ay, = Ay,, which is called the vector form of f.

The following result is fundamental, which assigns to each MVL
function a unique logical matrix.

Theorem 4 (Cheng et al., 2011). Given an MVL function f : []i_, Ay,
— Ay,. Then there exists a unique matrix My € Ly« called the
structure matrix of f, such that f can be expressed into its algebraic
form as

fxq, ..

=x" x k=T1" . k:
where x= x_; x;, k = [, ki.

.y Xn) = Myx, (7)

We give an example to describe how to construct M;.

Example 5. Assume that an MVL function f : D3 x D, — D3
is defined by Table 1, where z = f(x, y). Then in vector forms
X,z € As,andy € A,. According to Table 1, we have f (83, §,;) =
82, (85, 82) = 43, and so on. Noting (7), the first column of My
is 82, the second column is 8] and so on. Finally, we have My =
83[2,1,2,3,1,2].

The structure matrices of some useful gates are described in the
following example.

Example 6. By Theorem 4, a 2-gate F corresponds to a logical ma-
trix My € o£,4. Hence, there are 2* = 16 possible My, for instance,

(i) max-gate: F(x,y) :=xVy,M, =6,[1112];
(ii) min-gate: F(x,y) :=x Ay, M, = §,[1 2 2 2];
(iii) imply-gate: F(x,y) :=x —> y,M_, =6,[12 1 1].
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Similarly, a 3-gate F corresponds to a logical matrix Mg € £3xg.
Hence, there are 3° = 19683 possible M;. For instance, if we de-
note by Vv and A the max-gate and min-gate, respectively, then
M, = 63[11112212 3] with the max-gate F(x,y) = max
{x,y},and M, = 8§3[1 2 3 2 2 3 3 3 3] with the min-gate F(x, y)
= min{x, y}.

Remark 7. The calculations involved in converting a logical map-
ping into its algebraic form and back from an algebraic form to a set
of logical functions etc. are standard. An STP toolbox is provided in
http://lsc.amss.ac.cn/dcheng for the related computations, and we
refer the reader to Cheng et al. (2011) for details.

3. Disjoint bi-decomposition

Definition 8. Let f : [[_, Dy, — Di, be an MVL function as
in (1). Let {I", A} be a partition of {1,2,...,n}. f is said to be
bi-decomposable with respect to I" and A if there exist an op-
erator function F : :D,fo —  Dy,, two decomposition functions

¢ [licr Dy = Diyand ¥ : [ i, D, — Dy, such that

fGa, .o xn) = F(@(xy), ¥ (x2)), (8)
withx, € [[;c, Dy, and x; € [];c 4 Dy;-

Throughout this paper we assume the partition is well ordered.
That is,

r=1{1,2,...,r}, A={r+1,r+2,...,n} 9)

In general, a variable re-ordering gives this well-ordered partition.
Next, we introduce a new concept called type.

Definition 9. Given an integer t > 2, a t-type is a set of t logical
matrices of dimension t x t. That is,

T={T1,To,....Te|Ti € Lexe, 1 <i<t}.

Remark 10. Let F be a t-gate with its structure matrix as Mf =
[M{ My --- M;], where M; € £L¢y, i = 1,...,t. Then a t-type
generated by F is Tr = {M1, M, ..., M;}. Conversely, a t-type cor-
responds to a set of t-gates, which can be constructed by putting
matrices in the t-type into a row. It will be shown later that the
order of M; in M does not affect the decomposability, and thus Mg
can be constructed simply by putting M; in the same order as it
appears in Tg.

Example 11. Consider Example 6 again. The 2-types correspond-
ingto M, and M, are T,, = {5>[1 1], 82[1 2]} and T, = {5-[1 2],
822 2]}, respectively.

Similarly, the 3-types corresponding to M, and M, are T, =
{63[1 1 1], 85[1 2 2],85[1 2 3]}, and T, = {85[1 2 3], 83[2 2 3],
83[3 3 3]}, respectively.

Now consider partition (9). Denote p = [T:_; ki, g = [T, ki,
k = pq, and the structure matrix of MVL function f in (1) as

My =[My My --- M,], (10)

where M; € Lyyxg,i=1,...,p.
Then we have the following theorem.

Theorem 12. Consider the MVL function (1) with its structure matrix
as (10). It is bi-decomposable with respect to the partition (9), if and
only if there exist(i) a ko-type T = {Ty, T, ..., Ty} C Lirgxkgs
and(ii) a logical matrix My, € Ly, xq, Such that

M; =T;My,, whereT;, €T, i=1,...,p. (11)

Table 2

Possible 2-types with their corresponding functions.
{%1, %1} {T1, T2} {%1, T3} {1, Ta} {2, T2}
1 VY ¢V -y ¢ v
{%2, T3} {%2, T4} {%3, T3} {%3, Ta} {T4, Ta}
Py dAY -V —(¢— V) 0

Proof. (Necessity). Assume that there are three functions F, ¢,
and ¥, such that (8) holds. Denote the structure matrix of f by
My € Ly, xr which is split as in (10). Denote the structure matrix
0fF,¢and1/fbyMp = [F] F - Fko]qub = 8k0 [11 iz s lp] and
My, € Li,xq, respectively, where F; € Lijxky i =1, ..., ko.

Let x:= x['; X, x' := x[_; x;, and x* := =] | x;, then M;x =
MgMyx'My x*. Using Proposition 3, we have that

My = MpMj (I, ® My) . (12)

We first calculate MgMy, which is denoted by MgMy = [N N,
-+ Np]. Then a straightforward computation shows that N; = F;;,

j=1,...,p. If we denote

MeMy (I, @ My) == [Wy W, -~ W,], (13)
then

W, =FM,, j=1,...,p. (14)

Substituting the left and right hand sides of (12) by (10) and
(13)-(14) respectively, and comparing corresponding blocks yield

M]'=Fij1//’ j=1,...,p. (15)

Setting T = {Fy, 2, ..., Fy, }, (15) proves the necessity.

(Sufficiency). Assume that there exist a ko-type T and a matrix
My, such that (11) holds. Define ko-gate F by its structure matrix
asMp = [T1 T, -+ Ty).and My = 8, [s1s2 -+ sp]- Then a
straightforward computation shows that (12) holds, which implies

that f(x) = F(¢(x"), ¥ (x?)). O

Applying Theorem 12 to the Boolean case, we have the follow-
ing corollary.

Corollary 13. Consider a Boolean function f(x1, ..., X,). It is bi-
decomposable with respect to the partition (9), if and only if there exist
a 2-type T and a logical matrix My, € L, n-r such that the structure
matrix of f has the form as

My = [uiMy oMy -+ porMy ],
where u; € T, Vi.

Remark 14. Note that Lo, = {1 = §[1,1], %, = §[1,2],
T3 = 8,[2, 1], T4 = 62(2, 2]}. Ignoring the order of two compo-
nents, we have 10 possible 2-types T = {%;, €}, 1 < i,j < 4, with
their logical forms given in Table 2.

Remark 15. Theorem 2.1 in Sasao and Butler (1989), a result for
the disjoint bi-decomposition of Boolean functions, says that “f has
a disjoint bi-decomposition of form f (X, X5) = h(g1(X1), £2(X2)),
ifand only if u(f : X7, X2) < 2 and u(f : X5, X;) < 2". Actually,
fora 2-type T = {Ty, To}, u(f : Xq,X3) = 1(2) is equivalent to
Ty, = To(T; # Ty), and pu(f : X3,X;) = 1(2) is equivalent to
T, T, € {1,%4)3i € {1,2}, T; € {%,, T3}), using notations of
Remark 14. Specifically, we have the following correspondences.

(i) u(f : X1,X3) = 1and u(f : X5, X;) = 1 corresponds to
{Z1, T}, {%4, Tahs

(i) u(f : X1,X2) = 1and u(f : X5,X;) = 2 corresponds to
{T2, T}, {F5, T3}
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(iii) u(f : X1,X2) = 2 and u(f : X5,X;) = 1 corresponds to
{%1, Ta)s

(iv) u(f : X1,X3) = 2 and u(f : X5, X1) = 2 corresponds to the
rest types.

Therefore, this theorem and Corollary 13 are essentially the same.
Furthermore, Corollary 13 is also practically the same as Theo-
rem 11.5 in Davio et al. (1978).

Similarly, one can examine that Theorem 1 in Waliuzzaman and
Vranesic (1970), which deals with the Ashenhurst-decomposition
of k-valued functions, can also be seen as a special case of Theo-
rem 12.

Remark 16. Theoretically, since Theorem 12 involves only finite
sets, it is verifiable. But practically, exhaustive searching is a very
heavy job. We propose the following procedure to verify the
conditions.

(i) Step 1. Split M into p equal blocks as in (10).

(ii) Step 2. Define matrix
wo=[M M - M]. (16)
Then check whether rank(¥) < ky. If “No”, then the function
is not decomposable (with respect to this p and the partition).
Stop. (Note that rank(¥) < ko comes from (11).) If “Yes”, go
to the next step.

(iii) Step 3. If there exist independent rows of ¥ to construct a
logical matrix of dimension ky x g, let the matrix be My, and
go to the next step.

(iv) Step 4. With such My, solve the algebraic equations (11) for
I, i = 1,...,p. If the solution exists with T;, € Ly;xk,.
and there are totally s < ko different solutions (i.e., |{T]i =

1,..., p}| < ko), then the decomposition exists.

The following example illustrates Theorem 12 and Remark 16.

Example 17. For simplicity, we consider the case of a 3-valued
function. Let f (x1, X2, X3, X4) : ;()gl — &3 be alogical function with
its structure matrix My equals

03111111111 122222221 123222321
111111111 122222221 122222221
t11111111 111111111 111111111].

Consider the decomposition with partition I = {1, 2}, A = {3, 4},
thenp=q=9,M; =[M; M, --- Mo] and ¥ is given by (16).

It is easy to check rank(¥) = ko = 3, and we can choose
linearly independent rows of ¥ to form logical matrix My,. For
example, take the 7, 8, 9-th rows of ¥ (i.e., M3), then My, = 43
[123222321].

Next, we solve (11) for Ty, T,, T3, that is,

TiMy, =85[111111111],
oMy =85[122222221],
TsMy =83[123222321].

One valid solutionis T = {T; = §3[1 1 1], T, =83[122], T3 =
83[1 2 3]}, and therefore we can choose

Mp=68[111 122 123].

Finally, since Mf = [Tl, Tz, T3, T], Tz, Tz, T], T], T]](Ig ® M]//), we
have My = 83[123 122 11 1] If we define the 3-valued
logical operators — and <> by using the basic operators {V, A, =}
as follows:

A— B:=(AAB)V —A,
A< B:=(A— B)A(B— A),

then it is easy to verify that M_, = My, and M, = My,. Eventually,
we have function f in the decomposed form as f (x1, X2, X3, X4) =
(X1 = X2) V (X3 <> X4) .

4. Non-disjoint bi-decomposition

Definition 18. Let f : [, D, — D, be an MVL function as in
(1),and {I", ®, A} be a partition of {1, 2, ..., n}. f is said to be bi-
decomposable with respect to I" U ® and A U © if there exist an
operator function F : ;D,fo — Dy,, two decomposition functions

¢ [licrue D = Dig-and ¥ = [1icque Dk = D, Such that

f(xh"'vxn) :F((z)(xy)v W(X)L))’ (17)
where x, € [[icryo i and %, € [[ic yu0 Di-

Similar to the disjoint case, we assume the partition is well-
ordered. That is, there exist r; > 1,r, > 1withr; + 1 < n,
such that

r=1{1,2,...,n},

O={rn+1,rn+2,...,rn+n} (18)
A={r1+r2+l,r1+r2—|—2,...,n}.

For statement ease, denote [[1, ki = p, ]_[lrglrfrl ki = ¢
]_[LHHZJrl ki = g, and denote the structure matrix of f by M,
which can be split into £p equal blocks as

1 72 ¢ 1 32 ¢
My =[M{ M; -+ M{ --- My M2 --- M]]. (19)

Now we are ready to present the following theorem.

Theorem 19. Consider an MVL function (1) with its structure matrix
M. f can be decomposed as in (17) with respect to the partition (18),
ifand only if there exist (i) a ko-type T, and (ii) a set of logical matrices
Mfy € Lrgxg: S = 1,..., £, such that the structure matrix of f can
be expressed as

My = [p1aMy,  p1aM; 11.eM;,
2aMy, 2 aM; [h2,eMy,
. . (20)
gl 2 e
/va.lMyf /JLp,ZM,// Hp,ZM,//]
wherepu;jeT,i=1,...,p, j=1,..., L.

Proof. (Necessity). Since there are three functions F, ¢, and i such
that (17) holds, we denote the structure matrix of F by Mg = [F1 F,
s Fko], where F; € Lyyxk,, i =1, ..., ko; the structure matrix of
¢ by My = 8k,lj1j2 -+ jpel; and the structure matrix of v by

Ml// — I:MI}/ Mi[ Mé] c Dckoquv where M:// € ackoxq,i =

1,...,¢.Then construct ako-type T as T := {Fy, Fs, ..., Fy, }.

According to (17), we have
Mpx = MeMgx'X* My x°x°,
where x= x_ x;, ! = xL, x;, x> = x[L/"2
Using formulas (5) and (6) in Proposition 3, we have t

1 Xi, x3 = K?zrhzrtﬁl Xi.
My = MeMy (Ine ® My) (I, ® Re) , 21

where Ry is defined in (6).
We first calculate Mg My, which is denoted as

MFM¢ = [N] Nz e Npg]. (22)
Similar to the disjoint case, we have Ny € T,s = 1, 2, ..., p{. Next,
we calculate (I, ® My,) (I, ® Re):

(lpe @My ) (I, @ Re) = Ip @ [(Ie ® My) R (23)

We simplify (I, ® My,) R, first. Note that (I, ® My) € Ly, .24
and Ry € £,2,,. Converting them back to the conventional matrix
product we have

(I @ My) Ry = (I, @ My) (Re ® 1) . (24)
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Moreover, we have

I(®M‘/, =diag(M¢,,...,Mv,); (25)
4
and
I, 0 0
0 I, 0
R ® I = diag . £, . Loy | £]. (26)
0 0 I,

Multiplying (25) with (26) yields
(I ® My ) Ry = diag(M,, M}, ..., My). (27)

Putting (22)-(24) and (27) together, the right-hand-side of (21)
can be calculated, and it is ready to verify that the right-hand-side
of (21) has the form of (20). The necessity part is thus proved.

(Sufficiency). For the ko-type T = {Ty, Ty, ..., Ty, }, we construct
its corresponding ko-gate F by Mg = [Ty To -+ Ty, ]. Use My, =
[M‘}, Mé e M‘ff] as the structure matrix of ¥. Denote

_ 1,1 1,¢ p.1 p.t
My = [M¢ M¢ M¢ M¢ ]
Since (20) is known, according to ji,, g, We can determine Mg”g as
follows: if s g = Tj, then
B i
Mg" =& . (28)

Since the structure matrix of a logical function uniquely deter-
mines the function, we can have the pair of decomposition func-
tions ¢, v via the structure matrices My, My, obtained above. Then,
it is easy to check that the factorization (17) holds (via (21)). O

Remark 20. By the proof of Theorems 12 and 19, it can be readily
seen that as long as type T exists, the order of T; to form My does
not affect the decomposability but only induces different M.

Remark 21. Applying Theorem 19 to the Boolean function case,
again we can find that our result coincides with Theorem 3.2
in Sasao and Butler (1989). Therefore, our explicit decomposition
expression for the MVL function in Theorem 19 is a generalization
of the implicit form for the Boolean function in Sasao and Butler
(1989).

Remark 22. Similar to Remark 16, we give a procedure to verify
Theorem 19.

(i) Step 1. Split My into £p equal blocks as given in (19).
(ii) Step 2. Define ¢ matrices
. . . T
W = [(MQ)T )T (M;,)T] L i=1,...,0
Then check whether rank(¥;) < ko, Vj. If “No”, then the
function is not decomposable (with respect to this p and the
partition). Stop. If “Yes”, go to the next step.
(iii) Step 3. Use the independent rows of ¥; to construct logical
matrices M{l, € Ligxq, J=1,..., ¢, and go to the next step.

(iv) Step 4. With those M ,j=1,..., ¢, solve the algebraic equa-

—

tions /L,;jM{/, =M,i=1,...,p;j=1,..., £ If the solution
exists with u;; € Ly, xk,, and there are totally s < kg different
solutions (i.e., |{,u,-,j|i =1,....p;j=1,..., €}| < ko), then
the considered decomposition exists.

We use the following simple example to illustrate this.

Example 23. Let f(xq, X2, X3, X4) : i);‘ — D3 be a 3-valued logical
function with its structure matrix My as

83(111222333 221222333 321322333
111222333 222222222 222222222
111222333 222222222 123122111].

We consider the decomposition with partition: I = {1}, ® = {2},

and A = {3,4}. Thenp = € = 3,q = 9. Split My as M; =

[M] M? M} M, M? M; Mj] M? M;]. Then we have

[63[111222333]7

83(111222333]
[85[111222333]]

8522122233 3]
8[2222222272]
15522222222 2]]

785032 1322333]
8[222222222]].
15512312211 1]

It is ready to check that rank(¥;) = ko = 3,i = 1,2, 3. Then,
we can choose linearly independent rows of ¥; to form Miz/ for
i = 1,2, 3. For example, take My, = §3[1 11222333, M; =
63022122233 3],M;;‘/ =63[32 132233 3], and then M,

=[1\/1;,,M5,,M;]=33[1 11222333221222333 32
1 3 2 2 3 3 3]. Next, we solve the following equations:

W =

v, =

Y3 =

miaMy, =83[111222333], i=123;
paMy =85221222333],
miaMy, =683[222222222], i=23;

m1sMy, =85[321322333],
H23M;, =685[222222222],
p3sMy =85[123122111].

One valid solution is M1,1 = M21 = U371 = MH12 = H13 =
80312 3]; map = pa3 = p3p = 83[22 2] us3 = 833 2 11.
Hence,wecanchooseT = {T;y = 83[12 3], T, =683[22 2], T3 =
83[3 2 1]} and construct Mg = §3[12 3 222 32 1]. Finally,
according to (28), we have My = 4§3[1 1112212 3]. Thus,
f(x1, %2, X3,X4) = Msx = MFM¢X1X2M¢X2X3X4, with Mg, My, M‘/,
obtained as above. Converting back to the logical form, we have

F(X1, %2, X3, X1) = (X1 V X2) < [(x2 V —X4) A X3].

5. Implicit function theorem

Consider a set of r(< n) k-valued logical equations:

g, ..., xp) =1, j=1,...,1, (29)

where gj : D)) — Dy is a k-valued logical function, and x; € Dy,
i = 1,...,n. Note that the right hand side of (29) can be any
constant ¢; € Dy, but we choose ¢; = 1 ~ § for convenience.
In the vector form, we set x' = x[_{ x; € Ap, wherep = k",
X = Xi,_r41Xi € Ag,whereq = k".Letg = (g1, ...,&), theng
is a logical mapping & — Dy, or A, x A; — A, in the vector
form. The set of r equations of (29) can now be expressed into its
algebraic form as

Mex'x* = 8;, (30)

where Mg is the structure matrix of g.
This section considers when x? can be solved as functions of x!,
or more precisely, when (29) can be expressed as

X =@¢j(X1,...,X—r), j=n—r+1,...,n, (31)
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where ¢; : D" — Dy is an appropriate k-valued function. Let
¢ = (Pn_r+1, - - -, Pn), then ¢ is a logical mapping D; " — Dj, or
equivalently, A, — Aq.

The answer is the Implicit Function Theorem (IFT) for k-valued
functions. In fact, the problem can be considered as a special bi-
decomposition of MVL functions. To see that, for x,y € Dg, we
define a g-gate “<>" as

)1, ifx=y,
XOV=e, ifx#y,

where £ is a constant in 9, and £ # 1. Then (31) can be expressed
as

Fo(p(xh),x*) = 1. (33)

It is clear that to make (29) and (31) equivalent, it is necessary and
sufficient that

g, x%) = Fo(p(), ). (34)

This is the basic idea for deducing global IFT from the viewpoint of
the bi-decomposition of MVL functions.

Note that £ in (32) can be an arbitrary constant in &gy, which
means we may have a set of operators <> that satisfies (34). Hence,
we have to construct the set of all types that realize <>.

For a positive integer ¢ > 1, define a set of matrices as

8 = {Ei € Lyuq| Coli(Ey) = 8,; COli(Ey) # 8,.) # i}
wherei =1, 2, ..., q.Using Z;, we construct a set of g-types as

& = {{Er.....Eg}|[E € Bii=1,...,q}. (35)
As in previous sections, each type T € &, corresponds to a g-gate
F : Dyx Dy — Dg, which has Ey := [E; E; -+ Eg] asits structure
matrix.

The following lemma shows that & is the set of types corre-
sponding to <.

(32)

Lemma 24. Let x,y € Aq. Then x =y if and only if there exists a
T € &; such that

Erxy = 3;. (36)

Proof. Assume thatx = §¢ andy = 85 . Then a straightforward
computation shows that Erxy = Colg(Ey), where Er = [E; E,
-+ Eg]. Hence (36) holds ifand only ifa = 8. O

Then we have the following theorem.
Theorem 25 (Implicit Function Theorem). Suppose the structure

matrix of g associated with (29) can be expressed as M, = [M1 Ms,
..., Mgl. Thenx; G =n—r+1,...,n) can be solved as (31) from

(29), if and only if there exists a q-type T = {E1,E5, ..., Eq} € &,
such that
MeT, i=1,...,q. (37)

Proof. Express (31) in its algebraic form as x> = Myx'. According
to Lemma 24, (29) can be expressed as (31), if and only if there
existsa T € &; such that its corresponding g-gate F with My = Er
satisfies

MMgx'x> = 6. (38)
Comparing Eq. (38) with (30), it is clear that the necessary and
sufficient condition becomes that g can be expressed as

Mgx'x* = MpMyx'x%, (39)

where Mr corresponds to T € &;. Now formally consider X =
My x* with My, = I,, then the conclusion follows from Lemma 24
and Theorem 12 immediately. O

Remark 26. The Implicit Function Theorem (IFT) for Boolean func-
tions was discussed in Bazso (2000), where a sufficient condition
for local IFT was given. Theorem 25 is a global one and for general
k-valued functions.

6. Normalization of D-A Boolean networks

As an application of IFT, we consider the dynamic-algebraic
Boolean networks. Consider a Boolean network of n nodes. Assume
that there are n — r nodes, which satisfy Boolean dynamic models
as

xit+1) =fix1,...,xy), i=1,...,n—r, (40)

where x; € D,i = 1, ..., n. Besides, the other r nodes are deter-
mined by certain algebraic (logical) equations as (29), which may
be the constraints posed on these nodes. We call (40)-(29) a dy-
namic-algebraic (D-A) Boolean network.

Obviously, if we can obtain (31) from the set of equations (29),
the D-A Boolean network can be transformed into a standard
Boolean network by substituting (31) into (40). We call this pro-
cess the normalization of D-A Boolean networks. Clearly, the IFT
obtained in the last section is crucial to the normalization.

We give an example to depict this.

Example 27. Consider the following dynamic-algebraic Boolean
network:

x1(t+ 1) = x2(8) = Xa(1),

Xt +1) =x1() Ax3(t),

1= (x3(0)Vxa(D) < (X1 () Vx2(D)),
0 =x4(O)V(x1(t) V x2(1)).

(41)

We intend to solve x5 and x4 out from the last two equations. First,
we convert them to

81(X1, X2, X3, X4) i= (X3(H)Vxa(1)) < (X1 () Vx2(0)) = 1
82(X1, X2, X3, X4) == x4(F) < (X1() Vx2(t)) = 1,

where g, is the negation (—) of the last equation in (41).
Converting them into the vector form:

221]
121

122 X
121 Ix.

—_

1 1121
21212122 (42)

Mg x=08,[12212
Mg,x =58,[12121

Then the structure matrix of g = (g1, g2) can be easily calculated as
Mg =04[1432 3214 3214 234 1] Recalling Section 3,
a4-type T = {E;, E;, E3, E4} € &, satisfying (37) can be obtained,
where E; = 84[14 3 2],E3 =684[3214],E,=1[2341]andE,
can be arbitrary. Then, we have My = 64[1 3 3 4], which means
x3(t)x4(t) = 84[1 3 3 4]x1(t)x2(t). It follows that x3(t) and x4(t)
can be solved from (42) uniquely as

x3(t) = x1(t) A x2(t)
{x4(t) = x1(t) V x2(t). (43)

Substituting (43) into (41) yields the normal form of (41):
x(t+1) = x(0) = (1(0) Vxa(t) (a4)
X(t + 1) = x1(6) A xa2(t).

Then, with algebraic equations (43) for x3, x4, the dynamics of the
D-A Boolean network (41) is determined by (44).

Remark 28. The method provided above can also be used for
the control problems of dynamic-algebraic Boolean networks. We
only have to replace x! by {x', u} to use the aforementioned tech-
nique.

7. Concluding remarks

This paper first considered the bi-decomposition of MVL
functions. Necessary and sufficient conditions for both disjoint



D. Cheng, X. Xu / Automatica 49 (2013) 1979-1985 1985

and non-disjoint cases were obtained. The conditions are easily
verifiable and they provide a natural way to construct the
decompositions. Then, as a particular bi-decomposition, a global
Implicit Function Theorem of k-valued functions was obtained,
which is necessary and sufficient. Finally, as an application, the
normalization of D-A Boolean networks was considered.

The following are some final comments:

(i) Throughout this paper we assume that the concerned parti-
tions are well ordered. In fact, the technique developed in this
paper can also be used for arbitrary partition, which is briefly
described here.

A matrix Wiy, ) called swap matrix was defined in Cheng
et al. (2012), which satisfies that, for any two column vectors
xe€RMandy € R",

Wim.nxy = yx. (45)
Now assume that the function (1) is given with its algebraic

form as

fx1, ..., %0) = Mp I ;. (46)

Assume that f is bi-decomposable with respect to the or-
der (x,-1 Xy oees Xi,,). The order can be seen as an element o
of the permutation group 4,, that is, o 1,2,...,n) —
(i1, 12, . .., ip). Then we can construct a matrix W, such that

F@1, . %) = My w xi, (47)

where My = M;W, . Using the methods developed in this pa-
per to (47), we can check whether the decomposition is pos-
sible under this new order.

Next, we show how to construct W,,. Define

W] =W

i1—1 .
[kiy TTiL, K]

Using (45), we have
fxi, ..

Similarly, we can construct W, to move x;, to the second place.
Keep going like this, we finally have

fxq, ..

Using (5), we have f(xq,...

o Xp) = MWaxi xq - - Xip _1Xiy 110 - X

.y Xn) = MfW]Xi1W2Xi2 s Wn,1X,'n_1X,'n.

)= MW (I, @ Wa)

. (1k,~1 otk , ® Wn,1> l><J'7:l x;;. That is,

Wa =W <Ilql ® WZ) (Ik;] +ki2 ® W3)
"'(Ikil"'""""fn—z ® Wy1).

Compared with previous results which only considered the
Implicit Function Theorem of Boolean functions (Bazso, 2000),
ours is a global one and is necessary and sufficient. From its
application to D-A Boolean networks, one sees easily that the
global k-valued IFT is particularly useful for logical functions.
The method used there can also be extended to general D-A
logical (control) networks.

Developing numerical algorithms for bi-decomposition is ex-
tremely important for practical use. But it is not the target of
this paper. We leave it for further study.

—~
—
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