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a b s t r a c t

Control barrier functions (CBFs) have been used as an effective tool for designing a family of controls that
ensures the forward invariance of a set. When multiple CBFs are present, it is important that the set of
controls satisfying all the barrier conditions is non-empty. In this paper, we investigate such a control-
sharing property for multiple CBFs and provide sufficient and necessary conditions for the property to
hold. Based on that, we study the tracking control design problem of an input–output linearizable system
with multiple time-varying output constraints, where the output constraints are encoded as CBFs and
the barrier conditions are expressed as hard constraints in a quadratic program (QP) whose feasibility is
guaranteed by the control-sharing property of the CBFs. With the controller generated from the QP, the
output constraints are always satisfied and the tracking objective is achieved when it is not conflicting
with the constraints. The effectiveness of our control design method is illustrated by two examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

First introduced in optimization, barrier functions (also known
as barrier certificates) are now used as an important tool for the
verification of nonlinear systems and hybrid systems (Prajna &
Jadbabaie, 2004; Prajna, Jadbabaie, & Pappas, 2007; Wisniewski &
Sloth, 2016). Using Lyapunov-like conditions, barrier functions can
provably establish safety or eventuality properties of dynamical
systemswithout the difficult task of computing the system’s reach-
able set. The extension of barrier functions to a control system
results in control barrier functions (CBFs), which, in some sense,
parallels the extension of Lyapunov functions to Control Lyapunov
function (CLFs) . A family of controls ensuring the forward invari-
ance of a set is established by the barrier condition, which can be
used for the control synthesis of systems with state constraints or
safety specifications (Ames, Grizzle, & Tabuada, 2014; Panagou,
Stipanović, & Voulgaris, 2016; Tee, Ge, & Tay, 2009; Wieland &
Allgöwer, 2007).

Depending on the values of a CBF on the associated set, two
types of (control) barrier functions are commonly used in litera-
ture: one goes to infinity on the set boundary (Ames et al., 2014;
Jin & Xu, 2013; Tee et al., 2009), while the other vanishes on the set
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boundary (Romdlony & Jayawardhana, 2016; Wolff & Buss, 2005;
Xu, Tabuada, Ames, &Grizzle, 2015). The former type of CBFs is only
defined inside the given set whose boundary cannot be crossed;
for example, the reciprocal CBF in Ames et al. (2014), the barrier
Lyapunov function (BLF) in Ngo, Mahony, and Jiang (2005) and
Tee et al. (2009), and several of its extensions such as the tan-
type BLF (Jin, 2017) and the integral BLF (He, Sun, & Ge, 2015).
The latter type of CBFs is defined in the whole state space, but
the barrier condition ensures that the trajectory of the system will
stay inside the set once starting there. Related works belonging to
this type include the invariance control (Kimmel & Hirche, 2015;
Kimmel, Jahne, & Hirche, 2016; Wolff & Buss, 2005), the control
Lyapunov barrier function (Romdlony & Jayawardhana, 2016), and
the zeroing CBF (Xu et al., 2015), among others.

Various kinds of barrier conditions have been proposed in liter-
ature. Awidely used barrier condition for a CBF B is Ḃ ≤ 0 (or Ḃ ≥ 0
depending on the context), which implies that all the sublevel sets
of B are invariant (Prajna et al., 2007; Romdlony & Jayawardhana,
2016; Tee et al., 2009; Wieland & Allgöwer, 2007). Another barrier
condition is that given in the invariance control framework, where
the higher order derivative condition of a so-called invariance
function is implemented such that the function has negative values
inside the set. In a recent paper Ames et al. (2014), the barrier
condition Ḃ ≤ 0 was modified by allowing B to grow when it is
far away from the boundary of the set and stop growing when
it approaches the boundary. Such a condition enlarges the set of
controls that can guarantee the invariance of a given set. CBFs
under such a condition are combined with CLFs, which represent
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the performance objectives, in a quadratic program (QP), such that
a min-norm control law is generated via real-time optimizations.
This ideawas further extended in papers such as Ames, Xu, Grizzle,
and Tabuada (2017), Nguyen and Sreenath (2016) and Xu et al.
(2015), and applied to safety-critical systems (Ames et al., 2017),
multi-agent systems (Wang, Ames, & Egerstedt, 2016) and bipedal
robots (Hsu, Xu, & Ames, 2015).

When multiple state constraints are presented and each con-
straint is expressed as a CBF, it is important to ensure that all
the barrier conditions can be satisfied simultaneously, that is, the
set of controls satisfying all the barrier conditions is non-empty.
Particularly, for the QP-based framework proposed in Ames et al.
(2014, 2017) and Xu et al. (2015), simultaneous satisfaction of all
the barrier conditions is needed to guarantee the feasibility of the
QP. Such a shared-control problem has been investigated for CLFs
in Andrieu and Prieur (2010), Grammatico, Blanchini, and Andrea
(2014) and shown to be hard to solve in general; for instance, itwas
shown in Grammatico et al. (2014) that two convex CLFs do not
necessarily have a common control even for linear time-invariant
systems when the dimension of the system is greater than 2.

In this paper, we study the control-sharing property of multiple
high order CBFs. Roughly speaking, CBFs are said to have the
control-sharing property if for any state, there exists a common
control such that the barrier conditions are satisfied simultane-
ously. Sufficient and necessary conditions for the control-sharing
property to hold are given by assuming the CBFs have a well-
defined, global relative degree. Based on that, we investigate the
tracking control problem for input–output linearizable systems
with multiple time-varying output constraints, where each con-
straint is expressed as a CBF. Sufficient conditions for such CBFs to
have the control-sharing property are given. The barrier conditions
are expressed as hard constraints in a QP, where the objective
function is tominimize the distance between the generated control
and a nominal tracking control law. Because of the control-sharing
property of the CBFs, the QP is guaranteed to be feasible. Further-
more, the output constraints are always satisfied and the tracking
objective is achievedwhen it is not conflictingwith the constraints.
Our control design method has several advantages over existing
ones, such as the output constraints and the nominal tracking
controller can be designed separately, the reference trajectory does
not need to be restricted inside the constraint region, and the initial
output can be outside the constraint region. Two examples taken
from literature are also provided to show the effectiveness of the
proposed control design method.

A preliminary version of this work was presented in the con-
ference publication Xu (2016). The present paper is different
from Xu (2016) in the following importantways: the input–output
linearizable system (instead of the strict-feedback system in Xu,
2016) is considered; a key theorem in Xu (2016) is generalized
from the sufficient condition to the sufficient and necessary con-
ditions; the two CBFs case is generalized to the multiple CBFs
case. The remainder of the paper is organized as follows. In Sec-
tion 2, the notion of time-varying control barrier function and
the control-sharing property are introduced first, then sufficient
and necessary conditions for the control-sharing property to hold
are given. In Section 3, the tracking control problem for input–
output linearizable systems with multiple output constraints is
investigated, where two examples are also provided for illus-
trative purposes. Finally, some conclusion remarks are given in
Section 4.

2. Control-sharing barrier functions

In this section, we first provide a lemma for ensuring non-
negativeness of a function through a high order derivative con-
dition, and then introduce the notion of high order, time-varying

CBFs. After that, we define the control-sharing property ofmultiple
CBFs and give sufficient and necessary conditions for such a prop-
erty to hold.

2.1. Control barrier function

Consider a time-varying system

ẋ = f (t, x), (1)

with f : R × Rn
→ R piecewise continuous in t and locally

Lipschitz in x. For any initial condition x(0) at t = 0, there exists a
maximal time interval I(x(0)) such that x(t) is the unique solution
to (1). For simplicity, we assume that the system (1) is forward
complete, that is, I(x(0)) = [0, ∞).

Given a smooth function h(t, x) : R × Rn
→ R, its first

order derivative along the solution of (1) is h(1)(t, x) =
dh(t,x)

dt =
∂h(t,x)

∂x f (t, x) +
∂h(t,x)

∂t . The ith(i ≥ 2) order derivative of h(t, x) is
computed recursively and denoted as h(i)(t, x). In what follows, we
will also use h(i) for h(i)(t, x) when no confusion occurs.

Now suppose that h(t, x) is a C r function for some positive
integer r ≥ 1 and satisfies the following inequality:

h(r)
+ a1h(r−1)

+ · · · + ar−1h(1)
+ arh ≥ 0, (2)

where a1, . . . , ar ∈ R are a set of real numbers such that the roots
of the polynomial

pr0(λ) = λr
+ a1λr−1

+ · · · + ar−1λ + ar (3)

are real numbers−λ1, . . . ,−λr with λi > 0(1 ≤ i ≤ r). To explore
the condition under which h(t, x) is non-negative for t ≥ 0, we
define

s0(t, x) = h(t, x), sk = (
d
dt

+ λk)sk−1, 1 ≤ k ≤ r. (4)

It is clear that (2) is equivalent to sr (t, x) ≥ 0. Denote sk(0, x(0)) by
sk(0) for short where k = 0, 1, . . . , r . Then, we have the following
lemma.

Lemma 1. Given a C r (r ≥ 1) function h(t, x) : R × Rn
→ R and a

set of real numbers a1, . . . , ar ∈ R such that pr0(λ) shown in (3) has
roots −λ1, . . . ,−λr where λ1, . . . , λr > 0, if si defined in (4) satisfy
si(0) ≥ 0 for i = 0, 1, . . . , r − 1, then h(t, x) ≥ 0 for any t ≥ 0.

Proof. It is clear that inequality (2) is equivalent to d
dt (e

λr tsr−1
(t, x(t))) ≥ 0, which results in sr−1(t, x(t)) ≥ sr−1(0)e−λr t by
integrating both sides on [0, t]. Since sr−1 = ( d

dt + λr−1)sr−2,
we have d

dt (e
λr−1tsr−2(t, x(t))) ≥ sr−1(0)e(λr−1−λr )t . Integrating

both sides of this inequality on [0, t] results in sr−2(t, x(t)) ≥

sr−1(0)e−λr−1t
∫ t
0 e(λr−1−λr )τ1dτ1 + sr−2(0)e−λr−1t . Continuing this

process, we have

s0(t, x(t)) ≥ s0(0)e−λ1t +

r−1∑
k=1

[sk(0)e−λ1t
∫ t

0
e(λ1−λ2)τk

∫ τk

0
e(λ2−λ3)τk−1 ...

∫ τ2

0
e(λk−λk+1)τ1dτ1...dτk−1dτk]. (5)

For k = 1, . . . , r − 1, since λi > 0, it is easy to check that
e−λ1t

∫ t
0 e(λ1−λ2)τk

∫ τk
0 e(λ2−λ3)τk−1 ...

∫ τ2
0 e(λk−λk+1)τ1dτ1...dτk−1dτk is

positive, finite and approaches 0 as t → ∞. Since si(0) ≥ 0 for
i = 0, 1, . . . , r−1, the right-hand side of (5) is non-negative, finite
and approaches 0 as t → ∞. Therefore, h(t, x) ≥ 0 for any t ≥ 0,
which completes the proof. □

Remark 1. The conventional comparison lemma cannot be applied
to the high order inequality (2) directly (Khalil, 2002). In Gun-
derson (1971), Gunderson considered the high order differential
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inequality v(m)
≤ g(t, v, v(1), . . . , v(m−1)) and compared its solu-

tion with the co-system u(m)
= g(t, u, u(1), . . . , u(m−1)), under the

assumption that the map g(·) has some non-decreasing property
W ∗. However, if g(·) is a linear time invariant equation such as that
in (2), theW ∗ property does not hold. In Meigoli, Kamaleddin, and
Nikravesh (2009, 2012), Meigoli proposed high order derivative
conditions for Lyapunov function candidates such that some sta-
bility results in the sense of Lyapunov can be obtained. A ‘‘counter-
example’’ was given in Example 2 of Meigoli et al. (2009) showing
that if the characteristic equation (3) has complex roots, then the
solution of (2) may be greater than the solution of its co-system at
some time.

Now consider a time-varying affine control system

ẋ = f (t, x) + g(t, x)u, (6)

where x ∈ Rn, u ∈ U ⊂ R and f : R × Rn
→ Rn, g : R × Rn

→ Rn

are piecewise continuous in t and locally Lipschitz in x. Given a
sufficiently smooth time-varying function h(t, x) : R × Rn

→ R,
we define the modified Lie derivative of h(t, x) along f as L̄if h :=

( ∂
∂t + Lf )ih where i is a non-negative integer (see Palanki and

Kravaris, 1997 formore details).We formally define the high order,
time-varying CBFs, which generalizes the zeroing CBF of order 1
proposed in Xu et al. (2015), as follows.

Definition 1. Given control system (6), a C r function h(t, x) :

R × Rn
→ R with a relative degree r is called a (zeroing) control

barrier function (of order r) if there exists a column vector a =

(a1, . . . , ar )′ ∈ Rr such that for all x ∈ Rn, t ≥ 0,

sup
u∈U

[Lg L̄r−1
f h(t, x)u + L̄rf h(t, x) + a′ξ (t, x)] ≥ 0, (7)

where ξ (t, x) = (L̄r−1
f h, L̄r−2

f h, . . . , h)′ ∈ Rr , and the roots of pr0(λ)
shown in (3) are all negative.

For the rest of the paper, we assume that there is no con-
straint on the input u (i.e., U = R). Define set K(t, x) := {u ∈

R|Lg L̄r−1
f h(t, x)u+ L̄rf h(t, x)+ a′ξ (t, x) ≥ 0} for t ≥ 0, x ∈ Rn. Then

we have the following result that ensures the non-negativeness
of h.

Proposition 1. Given control system (6), if (i) h(t, x) with a relative
degree r is a CBF such that (7) holds and the roots of pr0(λ) are
−λ1, . . . ,−λr < 0, (ii) si defined in (4) satisfy si(0) ≥ 0 for i =

0, 1, . . . , r − 1, then any controller u(t, x) ∈ K(t, x) that is Lipschitz
in x will render h(t, x) ≥ 0 for any t ≥ 0.

Proposition 1 can be proved immediately by Lemma 1 (Blan-
chini & Miani, 2015; Xu et al., 2015). The set K(t, x) provides a
family of controls that guarantees the controlled invariance of a
time-varying set Ct := {x ∈ Rn

|h(t, x) ≥ 0}, such that x(t) ∈ Ct
for all t ≥ 0. Compared with the reciprocal-type CBFs proposed
in Ames et al. (2014) and the BLFs proposed in Tee et al. (2009),
which both assume that the barrier function takes the value of
infinity on the set boundary ∂Ct , the CBF defined above takes zero
values on the set boundary and allows h to change sign, which is a
nice property that will show its advantage later.

Remark 2. High order barrier conditions have been explored in
literature; for example, Hsu et al. (2015) studied the reciprocal-
type CBFs using a backstepping-likemethod, Nguyen and Sreenath
(2016) investigated the ‘‘exponential CBFs’’ that is similar to ours
and Wolff and Buss (2005) studied the invariance condition of
a set using high order derivatives of a so-called invariance func-
tion. Furthermore, it deserves mentioning that ideas similar to the
CBFs also appeared in the nonovershooting control of nonlinear
systems (Krstic & Bement, 2006; Zhu, 2013).

2.2. Control-sharing property

In this subsection, we define the control-sharing property for
multiple CBFs and provide sufficient and necessary conditions for
such a property to hold.

Given control system (6) and q(q ≥ 2) CBFs hi(t, x), i =

1, . . . , q, a natural question to ask is whether there exists a com-
mon (or shared) control u(t, x) such that the barrier conditions
(7) for hi are satisfied simultaneously. We formally define this
property as the control-sharing property as follows.

Definition 2. Consider control system (6) and q(q ≥ 2) CBFs
hi(t, x) : R × Rn

→ R, i = 1, . . . , q, where hi has a well-defined
(global, uniform) relative degree ri, that is, Lg L̄r−1

f h(t, x) ̸= 0,
Lg L̄if h(t, x) = 0, i = 0, 1, . . . , r − 2, for any t ∈ R, x ∈ Rn.
Suppose that (7) holds with ξi(t, x) = (L̄ri−1

f hi, L̄
ri−2
f hi, . . . , hi)′ for

some ai = (ai1, . . . , a
i
ri )

′ where the roots of pri0 (λ) are all negative.
The CBFs h1, . . . , hq are said to have the control-sharing property if
for any t ≥ 0, x ∈ Rn, there exists control u ∈ R such that the
following condition holds for any i = 1, . . . , q:

Lg L̄
ri−1
f hi(t, x)u + L̄rif hi(t, x) + a′

iξi(t, x) ≥ 0. (8)

The CBFs h1, . . . , hq are said to be control-sharing barrier func-
tions (CSBFs) if they have the control-sharing property. Define sets
Ki(t, x) := {u ∈ R|Lg L̄

ri−1
f hi(t, x)u + L̄rif hi(t, x) + a′

iξi(t, x) ≥ 0} for
i = 1, . . . , q. Then h1, . . . , hq are CSBFs implies

⋂q
i=1Ki(t, x) ̸= ∅

for all t ≥ 0, x ∈ Rn.
The next theorem provides sufficient and necessary conditions

for two functions h1, h2 to be CSBFs.

Theorem1. Consider control system (6) and twoCBFs h1(t, x), h2(t, x)
that are assumed to have well-defined (global, uniform) relative
degrees r1, r2 ≥ 1, respectively.
(i) If sgn(Lg L̄

r1−1
f h1(t, x))sgn(Lg L̄

r2−1
f h2(t, x)) = 1, then h1, h2 are

CSBFs.
(ii) If Lg L̄

r1−1
f h1(t, x) > 0, Lg L̄

r2−1
f h2(t, x) < 0, then h1, h2 are CSBFs

if and only if for any t ≥ 0, x ∈ Rn,

Lg L̄
r1−1
f h1(t, x)[L̄

r2
f h2(t, x) + a′

2ξ2(t, x)] ≥

Lg L̄
r2−1
f h2(t, x)[L̄

r1
f h1(t, x) + a′

1ξ1(t, x)]. (9)

(iii) If Lg L̄
r1−1
f h1(t, x) < 0, Lg L̄

r2−1
f h2(t, x) > 0, then h1, h2 are CSBFs

if and only if for any t ≥ 0, x ∈ Rn,

Lg L̄
r1−1
f h1(t, x)[L̄

r2
f h2(t, x) + a′

2ξ2(t, x)] ≤

Lg L̄
r2−1
f h2(t, x)[L̄

r1
f h1(t, x) + a′

1ξ1(t, x)]. (10)

Proof. (i) For any t ≥ 0, x ∈ Rn, if Lg L̄
r1−1
f h1(t, x) and Lg L̄

r2−1
f h2(t, x)

have the same sign, then it is clear that there exists u such that
(8) for k = 1, 2 can be satisfied simultaneously. (ii) In this case,

(8) for k = 1 is equivalent to u ≥
−L̄

r1
f h1(t,x)−a′

1ξ1(t,x)

Lg L̄
r1−1
f h1(t,x)

, and (8) for

k = 2 is equivalent to u ≤
L̄
r2
f h2(t,x)+a′

2ξ2(t,x)

−Lg L̄
r2−1
f h2(t,x)

. Therefore, h1, h2 are

CSBFs if and only if for any t ≥ 0, x ∈ Rn,
−L̄

r1
f h1(t,x)−a′

1ξ1(t,x)

Lg L̄
r1−1
f h1(t,x)

≤

L̄
r2
f h2(t,x)+a′

2ξ2(t,x)

−Lg L̄
r2−1
f h2(t,x)

holds, which is equivalent to condition (9) bymul-

tiplying (Lg L̄
r1−1
f h1)(−Lg L̄

r2−1
f h2) on both sides. (iii) Similar to case

(ii). □

Sufficient and necessary conditions for the control-sharing
property ofmultiple CBFs can be given similar to Theorem1,which
is omitted here due to the space limitation.
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3. Tracking control of input–output linearizable systems with
output constraints

In this section, we consider the tracking control design problem
of input–output linearizable systems with multiple time-varying
output constraints, where the reference trajectory may conflict
with the constraints. To solve the problem, we express each con-
straint as a CBF and provide conditions for them to be CSBFs. The
control law is obtained by solving a QP with the barrier conditions
as hard constraints, such that the output constraints are always
satisfied and the tracking objective is achieved when it does not
conflict with the constraints. The QP is always feasible because of
the control-sharing property of CBFs.

Consider a SISO affine control system as follows:

ẋ = f (x) + g(x)u,
y = h(x), (11)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ R is the output,
f : Rn

→ Rn, g : Rn
→ Rn are functions locally Lipschitz in x and

h : Rn
→ R is a sufficiently smooth function.

Suppose that h(x) has a well-defined, global relative degree
r(1 ≤ r ≤ n) on Rn, that is, for all x ∈ Rn, LgLif h(x) = 0, i =

0, 1, . . . , r − 2, and LgLr−1
f h(x) ̸= 0. We assume further that the

sign of LgLr−1
f h is positive.

Assumption 1. For all x ∈ Rn, LgLr−1
f h(x) > 0.

When its relative degree r < n, system (11) can be transformed
into a normal form with internal dynamics η̇ = f0(η, ξ ) via the
standard input–output linearization (Khalil, 2002). We pose the
following assumption on the internal dynamics.

Assumption 2. The internal dynamics η̇ = f0(η, ξ ) of (11) is
bounded-input-bounded-state stable.

Consider a (bounded) reference trajectory yd(t) : R+ → R, and
two C r functions ȳ(t) : R+ → R, y(t) : R+ → Rwhere ȳ(t) > y(t)
and ȳ(i), y(i) are bounded for i = 0, . . . , r , t ≥ 0. Suppose that the
initial condition x(0) ∈ X0 where X0 is a compact set such that
y(0) < y(x(0)) < ȳ(0). The control objective is to design a feedback
controller such that (i) the output y satisfies the constraint:

y(t) ≤ y(x(t)) ≤ ȳ(t), ∀t ≥ 0, (12)

and (ii) the output y tracks yd(t) as close as possible.
Note that no restriction is posed on the relation between yd(t)

and ȳ(t), y(t). Therefore, the tracking objective above can be inter-
preted as follows: y(t) → yd(t) if y(t) ≤ yd(t) ≤ ȳ(t), y(t) → ȳ(t)
if yd(t) > ȳ(t), and y(t) → y(t) if yd(t) < y(t). In other words,
while ensuring the bounding constraint (12) always satisfied, the
tracking performance is compromised when the reference trajec-
tory conflicts with the constraint.

Define two CBF candidates h1(t, x), h2(t, x) as

h1(t, x) = y(x(t)) − y(t), (13)

h2(t, x) = ȳ(t) − y(x(t)). (14)

Then, the output constraint (12) is equivalent to requiring
h1(t, x) ≥ 0 and h2(t, x) ≥ 0 for all t ≥ 0. The following
theorem provides sufficient conditions for h1, h2 to be CSBFs and
h1(t, x), h2(t, x) ≥ 0 for all t ≥ 0.

Theorem 2. Consider nonlinear system (11) where y has a well-
defined, global relative degree r(1 ≤ r ≤ n) on Rn, and two C r

functions ȳ(t), y(t) where ȳ(t) > y(t) for all t ≥ 0 and ȳ(i), y(i) are
bounded for i = 0, . . . , r. Suppose that Assumptions 1 and 2 hold,
and x(0) ∈ X0 where X0 is a compact set such that y(0) < y(0) < ȳ(0).

Then there exist a1, . . . , ar ∈ R such that (i) the roots of pr0(λ)
defined in (3) are all negative, (ii) s1k(0) defined in (4) with respect
to h1 in (13) and s2k(0) with respect to h2 in (14) are all non-negative
for k = 0, 1, . . . , r − 1. Furthermore, if

r∑
j=0

ar−j(ȳ(j)(t) − y(j)(t)) ≥ 0, ∀t ≥ 0, (15)

holds with such a1, . . . , ar and a0 := 1, then h1 and h2 are CSBFs, and
h1(t, x), h2(t, x) ≥ 0 for t ≥ 0.

Proof. Since y has a well-defined relative degree r on Rn,
functions h1, h2 also have a well-defined, global relative de-
gree r . Because h1, h2 are C r functions and X0 is compact,
|h(j)

1 (0, x(0))|, |h(j)
2 (0, x(0))| are bounded for j = 0, . . . , r−1. Recall-

ing (4), because h1(0), h2(0) > 0, there exist λ1, . . . , λr > 0 such
that si1(0), s

i
2(0), . . . , s

i
r−1(0) > 0 for i = 1, 2. Therefore, there exist

a1, . . . , ar ∈ R such that the roots of pr0(λ) are −λ1, . . . ,−λr < 0,
and sik(0) > 0 for i = 1, 2 and k = 0, 1, . . . , r − 1.

With such a0, a1, . . . , ar , if hi(i = 1, 2) satisfies the following
condition:

Lg L̄r−1
f hiu +

r∑
j=0

ar−jL̄
j
f hi ≥ 0, (16)

then, by case (ii) of Theorem 1, h1, h2 are CSBFs if and only if
LgLr−1

f y[−
∑r

j=0ar−jL
j
f y+

∑r
j=0ar−jȳ(j)] ≥ −LgLr−1

f y[
∑r

j=0ar−jL
j
f y−∑r

j=0ar−jy(j)] because Lg L̄r−1
f h1 = LgLr−1

f y > 0, Lg L̄r−1
f h2 =

−LgLr−1
f y < 0. Clearly, this inequality is implied by condition

(15). Therefore, h1, h2 are CSBFs, and the conclusion h1(t, x) ≥ 0,
h2(t, x) ≥ 0 follows by Lemma 1. □

If a1, . . . , ar are chosen such that conditions of Theorem 2 are
satisfied and h1, h2 are CSBFs, then, as discussed in Section 2.2,
any Lipschitz-continuous controller u(t, x) ∈ K1(t, x) ∩ K2(t, x)
guarantees that (12) holds.

To achieve the tracking objective, a nominal tracking control
law û can be designed without considering the output constraint,
by transforming the tracking problem as an asymptotic stabi-
lization problem using various standard approaches (Blanchini
& Miani, 2000; Khalil, 2002), such as the backstepping control
design when the system is in strict-feedback form (Krstic, Koko-
tovic, & Kanellakopoulos, 1995), or the output regulation when
the reference trajectory is generated by certain classes of exosys-
tems (Byrnes, Priscoli, & Isidori, 2012).

Among all the controls in the setK1 ∩K2, we choose the control
u that minimizes ∥u − û∥2 (Freeman & Kokotovic, 1996). This
min-norm controller is obtained by solving the following convex
quadratic program:

u∗(x) =argmin
u∈R

∥u − û∥2 (CBF-QP)

s.t. φ0
1u + φ1

1 ≤ 0, (CBF1)

φ0
2u + φ1

2 ≤ 0, (CBF2)

where (CBF1)–(CBF2) correspond to condition (16) with φ0
1 =

−LgLr−1
f y, φ1

1 = −
∑r

j=0ar−jL
j
f y +

∑r
j=0ar−jy(j), φ0

2 = LgLr−1
f y, φ1

2 =∑r
j=0ar−jL

j
f y−

∑r
j=0ar−jȳ(j). Because h1, h2 are CSBFs, there always

exists u such that (CBF1)-(CBF2) are satisfied simultaneously for
any t ≥ 0, x ∈ Rn, which means that the QP (CBF-QP) is always
feasible. While the control u ensures that the output constraint
(12) is respected, it is also chosen to be close to û as much as
possible. Hence, y(t) tracks yd(t) as close as possible. Particularly,
y(t) → yd(t) will be achieved when the constraints (CBF1)-(CBF2)
are inactive.

One advantage of the proposed QP-based framework is that, the
output constraint and the tracking objective are considered sepa-
rately, which makes the control design procedure more flexible.
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On one hand, the nominal controller in (CBF-QP) can be replaced
by any existing controller, such as a legacy controller in some
practical problem or a human operator in the ‘‘human-in-the-
loop’’ mechanism (Jiang & Astolfi, 2016; Kimmel & Hirche, 2015).
Therefore, our framework can be used as an ‘‘add-on’’ to another
control law such that the safety specification can be ensured. On
the other hand, because of the separability of the ‘‘safety constraint’’
and ‘‘control performance’’, the assumption y(t) < yd(t) < ȳ(t) is
not required, which was in fact used as a standing assumption in
papers that deal with similar problems (Jiang & Astolfi, 2016; Jin
& Xu, 2013; Tee et al., 2009).

Another advantage of the QP-based framework is that the
boundary of the constraint region can be crossed by the output
trajectory. For instance, when the initial output is outside the
constraint region, or the output is steered out of the region due
to unknown disturbances, it can enter the constraint region again
(by tracking the reference trajectory) and stay inside it afterwards,
provided that certain conditions hold. Specifically, if for some
T0 > 0, sik(T0, x(T0)) become non-negative for all k = 1, . . . , r
and i = 1, 2, then h1(t, x), h2(t, x) ≥ 0 for any t ≥ T0; if no
such T exists, the right-hand side of (5) provides lower bounds for
h1, h2, which approach 0 as t goes to infinity. Note that crossing the
constraint boundary is not possible in other related papers using
the reciprocal-type barriers such as Jiang and Astolfi (2016), Jin
and Xu (2013) and Tee et al. (2009), because the barrier functions
there take the value of infinity on the set boundary.

Remark 3. Condition (9) (or (10), (15)) can be checked by posing
it as an unconstrained minimization problem on variables t, x.
When dynamics of the system (as well as the constraint func-
tions) are polynomial or rational (or can be transformed into
polynomial/rational after variable substitutions), the coefficients
a1, . . . , ar satisfying (9) (or (10), (15)) can be found using the
sum-of-squares (SOS) optimization (Parrilo, 2000). Note that the
obtained coefficients also need to render all the roots of pr0(λ) to be
negative.

We use the following Example 1 from Tee, Ren, and Ge (2011)
to illustrate the effectiveness of our control design method.

Example 1. Consider a system described by

ẋ1 = 0.1x21 + x2,

ẋ2 = 0.1x1x2 − 0.2x1 + (1 + x21)u.

The output of the system is y = x1, the reference output is yd(t) =

0.5 sin t and the constraint functions are ȳ(t) = 0.6 + 0.1 cos t ,
y(t) = −0.5 + 0.4 sin t . This system is a strict-feedback system
without internal dynamics, hence Assumption 2 holds; it has a
global relative degree 2 since LgLf y = 1 + x21 > 0 for all x ∈

R2, hence Assumption 1 holds. We suppose that the initial states
satisfy |x1(0)| ≤ 0.4, |x2(0)| ≤ 2.5.

According to (13) and (14), we define h1(x, t) = x1 − 0.4 sin t +

0.5 and h2(x, t) = 0.1 cos t+0.6−x1.Weuse the SOS optimization
to find a1, a2 ∈ R such that (15) holds. Specifically, we find a1, a2 >
0 such that ( ¨̄y(t)− ÿ(t))+a1( ˙̄y(t)− ẏ(t))+a2(ȳ(t)−y(t)) ≥ 0, where
cos t and sin t are defined respectively as additional variables z1, z2
with the constraint z21 + z22 = 1. By the SOS, we obtain a1 = 32.54,
a2 = 43.34, which implies that the roots of p20(λ) are −λ1 =

−31.15,−λ2 = −1.39. One can verify that ( ¨̄y(t)− ÿ(t))+a1( ˙̄y(t)−
ẏ(t))+a2(ȳ(t)−y(t)) = 47.67−20.19 sin t−8.78 cos t ≥ 25.65, and
h(1)
1 (0) + λ1h1(0) > 0, h(1)

2 (0) + λ1h2(0) > 0 for all (x1(0), x2(0)) ∈

X0. Therefore, all the conditions of Theorem 2 are satisfied.
We obtain the nominal tracking control law û via the backstep-

ping approach, and generate the input u by solving the quadratic
program (CBF-QP). The simulation result is shown in Fig. 1, where
themethod proposed in this paper is compared with that in Tee et

Fig. 1. Dash–dot black line: yd = 0.5 sin t; solid red lines: y(t) and ȳ(t); dash–
dot and dash blue lines: the output using our method from the initial conditions
(0.4, 2.5) and (−0.3, −2), respectively; dash–dot and dash magenta lines: the
output using the method in Tee et al. (2011) from the initial conditions (0.4, 2.5)
and (−0.3, −2), respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Dash–dot black line: yd = sin t; red lines: y(t) and ȳ(t); blue line: the output
trajectory using our method from the initial condition (1.4, 0). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

al. (2011). The reference trajectory yd is depicted by the dash–dot
black line, and the lower bound y(t) and the upper bound ȳ(t) of the
output are depicted by solid red lines. From the initial condition
(0.4, 2.5), the outputs using our method and that in Tee et al.
(2011) are shown in dash–dot blue and dash–dot magenta lines,
respectively; from the initial condition (−0.3, −2), the outputs
using our method and that in Tee et al. (2011) are shown in dash
blue and dash magenta lines, respectively. It can be seen that both
methods satisfy the output constraint for all time and can track
yd after some time. However, the output using our method has a
shorter transient time, and it starts tracking yd without deviating
to the constraint boundary (partially because the nominal control
is designed independent of the constraints).

Next, we consider a reference trajectory yd(t) = sin t , which
violates the constraints at some time, and initial condition (1.4, 0),
which implies that the initial output lies outside the constraint
region. Note that this case cannot be solved by the BLF method
in Tee et al. (2011). Using our QP-based method, we still compute
the nominal tracking control law û by the backstepping approach,
and obtain u by solving (CBF-QP). The simulation result using our
method is shown in Fig. 2. It can be seen that the output y enters the
constraint region after some time and stays inside it afterwards;
moreover, y tracks yd when y ≤ yd ≤ ȳ, tracks ȳ when yd > ȳ, and
tracks ywhen yd < y.

Results above for SISO systems can be generalized to MIMO
systems without difficulty. The CBF candidates can be defined
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Fig. 3. The output trajectory (solid blue line) from the initial condition (3.2, 3, 0, 0)
where the red lines are the constraint boundaries. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)

similar to (13) and (14), such that non-negativeness of the CBFs im-
plies satisfaction of the output constraints. Sufficient conditions to
ensure the control-sharing property of multiple CBFs can be given
easily similar to Theorem 2. Hence the input can be obtained by
solving a quadratic program, such that the constraints are always
respected and the tracking of a reference trajectory is achieved as
much as possible. We use the following example from Jiang and
Astolfi (2016) to illustrate the design procedure forMIMO systems.

Example 2. Consider a system described by

ẋ1 = x3,
ẋ2 = x4,
ẋ3 = −x1 − 0.5x2 − x3 − 0.3x4 + u1,

ẋ4 = −0.4x1 − 2x2 − 0.3x3 + 0.5x4 + u2.

The outputs of the system are y1 = x1, y2 = x2, the output
constraints are y1(t) ≥ −1, −0.5 ≤ y2(t) ≤ 4, and the reference
trajectories for y1 and y2 are y1d(t) = 1.8 + 3 sin(t + 0.5) and
y2d(t) = 2+3 cos(t +0.5), respectively. The outputs of the system
have well-defined, global relative degrees {2, 2}, for all x ∈ R4.
Note that trajectories of y1d and y2d constitute a circle in the x1-
x2 plane with centre (1.8, 2) and radius 3, which intersects with
boundaries of the constraint region.

We define CBF candidates h1
1(t, x) = x1 + 1, h1

2(t, x) = x2 +

0.5, h2
2(t, x) = 4 − x2, which all have a relative degree 2. Since

ȳ2 − y
2

= 4.5 is constant, it is easy to check that h1
1, h

1
2, h

2
2 are

CSBFs, provided that the corresponding a1, a2 > 0 are chosen such
that all the roots of λ2

+ a1λ + a2 are negative. We choose here
a1 = 20, a2 = 100. The nominal tracking control law û is obtained
via the backstepping approach. Simulation results for two different
initial conditions are shown in Figs. 3 and 4, respectively,where the
boundary of the constraint region is depicted by solid red lines, the
reference trajectory is depicted by the dash–dot black line, and the
output trajectory is depicted by the solid blue line.

In Fig. 3, the initial condition is chosen as (3.2, 3, 0, 0) where
the initial output is inside the constraint region. It can be seen that
the output trajectories are alwayswithin the constraint region, and
track the reference trajectory well when it is inside the constraint
region. Note that the nominal controller û here can be replaced by
human operators as was considered in Jiang and Astolfi (2016).
In Fig. 4, the initial condition is chosen as (2, 4.5, 0, 0) where the
initial output is outside the constraint region. It can be seen that

Fig. 4. The output trajectory (solid blue line) from the initial condition (2, 4.5, 0, 0)
where the red lines are the constraint boundaries. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)

the output trajectories enter the constraint region after some time
and stay inside it afterwards; the output trajectories also track the
reference trajectory well when it is inside the constraint region as
expected.

4. Conclusions

In this paper, we studied the control-sharing property of multi-
ple CBFs, and investigated the tracking control problem of input–
output linearizable systems with multiple output constraints
under a QP-based framework. The QP is guaranteed to be feasible
because of the control-sharing property of CBFs. Several advan-
tages of our control design method over existing ones have been
discussed and shown by examples. Future work include relaxing
the global relative degree assumption, and considering systems
with disturbances and input constraints.
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