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Abstract—Safety critical systems involve the tight cou-
pling between potentially conflicting control objectives and
safety constraints. As a means of creating a formal frame-
work for controlling systems of this form, and with a
view toward automotive applications, this paper develops a
methodology that allows safety conditions—expressed as
control barrier functions—to be unified with performance
objectives—expressed as control Lyapunov functions—
in the context of real-time optimization-based controllers.
Safety conditions are specified in terms of forward invari-
ance of a set, and are verified via two novel generaliza-
tions of barrier functions; in each case, the existence of a
barrier function satisfying Lyapunov-like conditions implies
forward invariance of the set, and the relationship between
these two classes of barrier functions is characterized. In
addition, each of these formulations yields a notion of con-
trol barrier function (CBF), providing inequality constraints
in the control input that, when satisfied, again imply for-
ward invariance of the set. Through these constructions,
CBFs can naturally be unified with control Lyapunov func-
tions (CLFs) in the context of a quadratic program (QP);
this allows for the achievement of control objectives (rep-
resented by CLFs) subject to conditions on the admissible
states of the system (represented by CBFs). The mediation
of safety and performance through a QP is demonstrated on
adaptive cruise control and lane keeping, two automotive
control problems that present both safety and performance
considerations coupled with actuator bounds.

Index Terms—Barrier function, control Lyapunov func-
tion, nonlinear control, quadratic program, safety, set in-
variance.

I. INTRODUCTION

CYBER-PHYSICAL systems have at their core tight cou-
pling among computation, control and physical behav-

ior. One of the difficulties in designing cyber-physical systems
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is the need to meet a large and diverse set of objectives by
properly designing controllers. While it is tempting to decom-
pose the problem into the design of a controller for each in-
dividual objective and then integrate the resulting controllers
via software, the integration problem is far from being a simple
one. Examples abound e.g., in robotic and automotive systems,
of unexpected and unintended interactions between controllers
resulting in catastrophic behavior. In this paper we address a
specific instance of this problem: how to synthesize a controller
enforcing the different, and occasionally conflicting, objectives
of safety and performance/stability. The overarching objective
of this paper is to develop a methodology to design controllers
enforcing safety objectives expressed in terms of invariance of
a given set, and performance/stability objectives, expressed as
the asymptotic stabilization of another given set.

Motivated by the use of Lyapunov functions to certify stabil-
ity properties of a set without calculating the exact solution of
a system, the underlying concept in this paper is to use barrier
functions to certify forward invariance of a set, while avoiding
the difficult task of computing the system’s reachable set. Prior
work in [1] incorporates into a single feedback law the con-
ditions required to simultaneously achieve asymptotic stability
of an equilibrium point, while avoiding an unsafe set. Impor-
tantly, if the stabilization and safety objectives are in conflict,
then no feedback law can be proposed. In contrast, the approach
developed here will pose a feedback design problem that medi-
ates the safety and stabilization requirements, in the sense that
safety is always guaranteed, and progress toward the stabiliza-
tion objective is assured when the two requirements “are not in
conflict” [2]. The essential differences in these approaches will
be highlighted through a realistic example.

A. Background

Barrier functions were first utilized in optimization; see Chap-
ter 3 of [3] for an historical account of their use in optimization.
More recently, barrier functions were used in the paper [4] to
develop an interior penalty method for converting constrained
optimal control methods into unconstrained ones1. Barrier func-
tions are now common throughout the control and verification
literature due to their natural relationship with Lyapunov-like

1Although the techniques employed are different from ours, there are con-
ceptual similarities as can be seen by noticing the similarity between (2)–(4)
defined later in our paper and the inequalities appearing in Proposition 4, item
(g), in [4] characterizing membership to the set used to define a Gauge function.
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functions [5], [6], their ability to establish safety, avoidance, or
eventuality properties [7]–[11], and their relationship to multi-
objective control [12]. Two notions of a barrier function associ-
ated with a set C are commonly utilized: one that is unbounded
on the set boundary, i.e., B(x) → ∞ as x→ ∂C, termed a re-
ciprocal barrier function here, and one that vanishes on the
set boundary, h(x) → 0 as x→ ∂C, called a zeroing barrier
function here. In each case, ifB or h satisfy Lyapunov-like con-
ditions, then forward invariance of C is guaranteed. The natural
extension of a barrier function to a system with control inputs
is a Control Barrier Function (CBF), first proposed by [6]. In
many ways, CBFs parallel the extension of Lyapunov func-
tions to Control Lyapunov functions (CLFs), as pioneered in
[13]–[15] and studied in depth in [16]. In each case, the key
point is to impose inequality constraints on the derivative of a
candidate CBF (resp., CLF) to establish entire classes of con-
trollers that render a given set forward invariant (resp., stable).

The Lyapunov-like conditions that define a (control) barrier
function are intrinsically coupled to the class of controllers that
achieve forward invariance of a set C. As emphasized in [17]
and [18], it is therefore essential to consider how one defines
the evolution of a barrier function away from the set boundary,
as this will translate directly to conditions imposed on a CBF.
In the case of reciprocal barrier functions, existing formulations
impose invariant level sets of B [5], via, Ḃ ≤ 0, as was done
in earlier work on zeroing barrier functions (or barrier certifi-
cates) [11] via ḣ ≥ 0; yet, in both cases, these conditions are
too restrictive on the interior of C.

B. Contributions

The first contribution of this paper is to formulate conditions
on the derivative of a (reciprocal or zeroing) barrier function that
are minimally restrictive on the interior of C. These conditions
will be formulated with an eye toward their extension to control
barrier functions. It is clear that less restrictive conditions for a
barrier function will translate into a control barrier function that
admits a larger set of inputs compatible with controlled invari-
ance; this will be important when integrating performance with
safety later in the paper. Less obvious considerations include
robustness of a controlled invariant set to model perturbations,
Lipschitz continuity of feedbacks achieving controlled invari-
ance, and, as pointed out by [10] for barrier certificates, convex-
ity of the set of control barrier functions when computing them
numerically.

For reciprocal barrier functions, we allow forB to grow when
it is far away from the boundary of C in that we only require that
Ḃ ≤ α(1/B), for a class-K function α. In the case of zeroing
barrier functions, we adopt a condition of the form ḣ ≥ −α(h).
The latter condition may be somewhat surprising in view of the
well-known Nagumo’s Theorem, which states that for a system
without inputs and aC1 function h, the condition ḣ ≥ 0 on ∂C is
necessary and sufficient for the zero superlevel set to be invari-
ant. Importantly, under mild conditions on C, it is demonstrated
that the conditions we propose are also necessary and sufficient
for forward invariance, and result in the relationships shown in
Fig. 1. Moreover, it is shown how our conditions lead to Lip-

Fig. 1. Relationships among reciprocal barrier functions (RBFs), zero-
ing barrier functions (ZBFs), and forward invariance that are developed in
the paper. The underlying analysis can be found in Theorem 1, Proposi-
tion 1, Proposition 3 and Theorem 2. The relations established for barrier
functions then extend to control barrier functions.

schitz continuity of control laws, robustness, and convexity of
the class of control barrier functions.

Safety-critical control problems often include performance
objectives, such as stabilization to a point or a surface, in addi-
tion to safety constraints. An important novelty of the present
paper is that a Quadratic Program (QP) is used to “mediate” these
(potentially conflicting) specifications: stability and safety. The
motivation for this solution comes from [19]–[21], which devel-
oped CLFs to exponentially stabilize periodic orbits in a class of
hybrid systems. The experimental realization of CLF-inspired
controllers on a bipedal robot resulted in the observation that,
since CLF conditions are affine in torque, they can be formulated
as QPs [22]. Moreover, this perspective allows for the consid-
eration of multiple control objectives (expressed via multiple
CLFs) together with force- and torque-based constraints [23],
[24]. The present paper extends these ideas by unifying CBFs
and CLFs through QPs. In particular, given a control objective
(expressed through a CLF) and an admissible set in the state
space (expressed via a CBF), we formulate a QP that medi-
ates the tradeoff of achieving a stabilization objective subject to
ensuring the system remains in a safe set. In particular, relax-
ation is used to make the stability objective a soft constraint on
the QP, while safety is maintained as a hard constraint. In this
way, safety and stability do not need to be simultaneously sat-
isfiable, and continuity of the resulting control law is provably
maintained.

An alternative approach to controlled invariance has been de-
veloped in [25]–[29] under the name of invariance control. This
elegant body of work is based on an extension of Nagumo’s con-
dition to functions h of higher relative degree [30], namely, it fo-
cuses on derivative conditions on the boundary of the controlled-
invariant set. As a consequence, the control law is discontinuous,
such as in sliding mode control, and as in sliding mode control,
chattering may occur. We, however, establish a control frame-
work that yields checkable conditions for Lipschitz continuous
control laws and well-defined solutions of the closed-loop sys-
tem. This is important from a theoretical point of view as well as
the practical benefit of avoiding chattering. The consideration of
the existence of solutions to the closed-loop system is one of the
important differences between barrier certificates for dynamical
systems and control barrier functions for control systems.

The CBF-CLF-based QPs are illustrated on two automotive
safety/convenience problems; namely, Adaptive Cruise Control
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(ACC) and Lane Keeping (LK) [31]–[34]. ACC is being devel-
oped and deployed on passenger vehicles due to its promise to
enhance driver convenience, safety, traffic flow, and fuel econ-
omy [35]–[37]. It is a multifaceted control problem because it
involves asymptotic performance objectives (drive at a desired
speed), subject to safety constraints (maintain a safe distance
from the car in front of you), and constraints based on the physi-
cal characteristics of the car and road surface (bounded accelera-
tion and deceleration). A key challenge is that the various objec-
tives can often be in conflict, such as when the desired cruising
speed is faster than the speed of the leading car, while provably
satisfying the safety-oriented constraints is of paramount im-
portance. Lane keeping, maintaining a vehicle between the lane
markers [38], is another safety-related problem that we use to
illustrate the methods developed in this paper.

A preliminary version of this work was presented in the con-
ference publications [2] and [39]. The present paper adds to
those two papers in the following important ways: the relations
between the two forms of barrier functions are characterized;
barriers with a higher relative degree are considered; the adap-
tive cruise control problem is extended from the lead vehicle’s
speed being constant to the more realistic case of varying speed
with bounded input force; and the lane keeping problem is con-
sidered under the proposed QP framework.

C. Organization and Notation

The remainder of the paper is organized as follows. Two
barrier functions, specifically, reciprocal barrier functions and
zeroing barrier functions, are formulated in Section II, and are
extended to control barrier functions in Section III. Quadratic
programs that unify control Lyapunov functions and control
barrier functions are introduced in Section IV. The theory de-
veloped in the paper is illustrated on the adaptive cruise control
and lane keeping problems in Section V, with simulations re-
ported in Section VI. Conclusions are provided in Section VII.

Notation: R,R+
0 denote the set of real, non-negative real

numbers, respectively. Int(C) and ∂C denote the interior and
boundary of the set C, respectively. The open ball in Rn

with radius ε ∈ R+ and center at 0 is denoted by Bε = {x ∈
Rn | ‖x‖ < ε}. The Minkowsky sum of two sets R ⊆ Rn and
S ⊆ Rn is denoted by R⊕ S. The distance from x to a set
S is denoted by ‖x‖S = infs∈S ‖x− s‖. For any essentially
bounded function g : R → Rn , the infinity norm of g is de-
noted by ‖g‖∞ = ess supt∈R ‖g(t)‖. A continuous function
β1 : [0, a) → [0,∞) for some a > 0 is said to belong to class K
if it is strictly increasing and β1(0) = 0. A continuous function
β2 : [0, b) × [0,∞) → [0,∞) for some b > 0 is said to belong
to class KL, if for each fixed s, the mapping β2(r, s) belongs
to class K with respect to r and for each fixed r, the mapping
β2(r, s) is decreasing with respect to s and β2(r, s) → 0 as
s→ ∞.

II. RECIPROCAL AND ZEROING BARRIER FUNCTIONS

This section studies two notions of barrier functions and in-
vestigates their relationships with forward invariance of a set.

Consider a nonlinear system of the form

ẋ = f(x) (1)

wherex ∈ Rn and f is assumed to be locally Lipschitz. Then for
any initial condition x0 := x(t0) ∈ Rn , there exists a maximum
time interval I(x0) = [t0 , τmax) such that x(t) is the unique
solution to (1) on I(x0); in the case when f is forward complete,
τmax = ∞. A set S is called (forward) invariant with respect to
(1) if for every x0 ∈ S, x(t) ∈ S for all t ∈ I(x0).

A. Reciprocal Barrier Functions

1) Motivation: Given a closed set C ⊂ Rn , we determine
conditions on functionsB : Int(C) → R such that Int(C) is for-
ward invariant. These conditions will motivate the formulation
of the barrier functions considered in this paper.

Assume that the set C is defined as

C = {x ∈ Rn : h(x) ≥ 0}, (2)

∂C = {x ∈ Rn : h(x) = 0}, (3)

Int(C) = {x ∈ Rn : h(x) > 0}, (4)

where h : Rn → R is a continuously differentiable function.
Later, it will also be assumed that C is nonempty and has no
isolated point, that is,

Int(C) �= ∅ and Int(C) = C. (5)

Motivated by the barrier method in optimization [40], con-
sider the logarithmic barrier function candidate

B(x) = − log
(

h(x)
1 + h(x)

)
. (6)

Note that this function satisfies the important properties

inf
x∈Int(C)

B(x) ≥ 0, lim
x→∂C

B(x) = ∞. (7)

The question then becomes: what conditions should be im-
posed on Ḃ so that Int(C) is forward invariant? The conven-
tional answer in [5], [11] has been to enforce the condition
Ḃ ≤ 0, but this may not be desirable since it requires all sub-
level sets of C to be invariant; in particular, it will not allow a
solution to leave a sublevel set even if by doing so it will remain
in Int(C). A condition analogous to this was relaxed by [18] and
[17] where the key idea was to only require a single sublevel set
to be invariant. Similar to this, we relax the condition Ḃ ≤ 0 to

Ḃ ≤ γ

B
, (8)

where γ is positive. This inequality allows for Ḃ to grow when
solutions are far from the boundary of C. As solutions approach
the boundary, the rate of growth decreases to zero.

For (8) to be an acceptable condition, we need to verify that
its satisfaction guarantees that solutions to (1) stay in Int(C). To
see this, we note that differentiating (6) along solutions of (1)
gives

Ḃ = − ḣ

h+ h2 .
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Therefore, (8) implies that the rate of change in h with respect
to t is bounded by

ḣ ≥ γ(h+ h2)

log
(

h
1+h

) .

Assuming for the moment that solutions x(t, x0) of (1) are
forward complete, the Comparison Lemma [41] implies that

h(x(t, x0)) ≥ 1

−1 + exp
(√

2γt+ log2
(
h(x0 )+1
h(x0 )

)) .

Therefore, if h(x0) > 0, i.e., x0 ∈ Int(C), then condition (8)
guarantees that h(x(t, x0)) > 0 for all t ≥ 0, i.e., x(t, x0) ∈
Int(C) for all t ≥ 0.

Apart from (6), another barrier function that is commonly
considered in optimization is the inverse-type barrier candidate

B(x) =
1

h(x)
. (9)

Note that B(x) in (9) also satisfies the properties in (7). If
condition (8) holds, then by the Comparison Lemma, we have

h(x(t, x0)) ≥ 1√
2γt+ 1

h2 (x0 )

,

and once again, x(t, x0) ∈ Int(C) for all t ≥ 0, provided that
x0 ∈ Int(C).

2) Reciprocal Barrier Functions and Set Invari-
ance: Based on the presented motivation, we formulate a no-
tion of barrier function that provides the same guarantees in a
more general context.

Definition 1: For the dynamical system (1), a continuously
differentiable function B : Int(C) → R is a reciprocal barrier
function (RBF) for the set C defined by (2)–(4) for a continu-
ously differentiable function h : Rn → R, if there exist class K
functions α1 , α2 , α3 such that, for all x ∈ Int(C),

1
α1(h(x))

≤ B(x) ≤ 1
α2(h(x))

, (10)

LfB(x) ≤ α3(h(x)). (11)

Remark 1: The Lyapunov-like bounds (10) on B imply that
along solutions of (1), B essentially behaves like 1

α(h) for some
class K function α with

inf
x∈Int(C)

1
α(h(x))

≥ 0, lim
x→∂C

1
α(h(x))

= ∞.

The condition (11) on Ḃ = LfB, which generalizes condition
(8), allows for B to grow quickly when solutions are far away
from ∂C, with the growth rate approaching zero as solutions
approach ∂C.

Remark 2: In the conference version [2], a function satis-
fying Def. 1 was simply called a barrier function and not a
reciprocal barrier function. The new terminology is necessary
to make the distinction with a second type of barrier function
used in the next subsection.

Theorem 1: Given a set C ⊂ Rn defined by (2)–(4) for a
continuously differentiable function h, if there exists a RBF
B : Int(C) → R, then Int(C) is forward invariant.

The following lemma is established to prove Theorem 1.
Lemma 1: Consider the dynamical system

ẏ = α

(
1
y

)
, y(t0) = y0 , (12)

with α a class K function. For every y0 ∈ (0,∞), the system
has a unique solution defined for all t ≥ t0 and given by

y(t) =
1

σ
(

1
y0
, t− t0

) , (13)

where σ is a class KL function.
Proof: Under the change of variables z = 1

y , the dynamical
system (12) becomes

ż = − ẏ

y2 = −
α
(

1
y

)
y2 = −α(z)z2 := −ᾱ(z). (14)

Since α(z) is a class K function, it follows that ᾱ(z) = α(z)z2

is a class K function. The fact that ᾱ(z) is a continuous, non-
increasing function for all z ≥ 0 implies that (14) has a unique
solution for every initial state z0 > 0; see Peano’s Uniqueness
Theorem (Thm. 1.3.1 in [42], Thm. 6.2 in [43]). Furthermore,
by the proof of Lemma 4.4 of [41], it follows that the solution
is defined on [t0 ,∞) and is given by

z(t) = σ(z0 , t− t0),

with σ a classKL function. Converting from z back to y through
y = 1

z yields the solution y(t) given in (13). �
We now have the necessary framework in which to prove

Theorem 1.
Proof (of Theorem 1): Utilizing (10) and (11), we have that

Ḃ ≤ α3 ◦ α−1
2

(
1
B

)
:= α

(
1
B

)
. (15)

Since the inverse of a class K function is a class K function,
and the composition of class K functions is a class K function,
α = α3 ◦ α−1

2 is a class K function.
Let x(t) be a solution of (1) with x0 ∈ Int(C), and letB(t) =

B(x(t)). The next step is to apply the Comparison Lemma to
(15) so that B(t) is upper bounded by the solution of (12). To
do so, it must be noted that the hypothesis “f(t, u) is locally
Lipschitz in u” used in the proof of Lemma 3.4 in [41], can
be replaced by with the hypothesis “f(t, u) is continuous, non-
increasing in u”. This is valid because the proof only uses the
local Lipschitz assumption to obtain uniqueness of solutions
to (12), and this was taken care of with Peano’s Uniqueness
Theorem in the proof of Lemma 1.

Hence, the Comparison Lemma in combination with
Lemma 1 yields

B(x(t)) ≤ 1

σ
(

1
B (x0 ) , t− t0

) , (16)



AMES et al.: CONTROL BARRIER FUNCTION BASED QUADRATIC PROGRAMS FOR SAFETY CRITICAL SYSTEMS 3865

for all t ∈ I(x0), where x0 = x(t0). This, coupled with the left
inequality in (10), implies that

α−1
1

(
σ

(
1

B(x0)
, t− t0

))
≤ h(x(t)), (17)

for all t ∈ I(x0). By the properties of classK and KL functions,
if x0 ∈ Int(C) and hence B(x0) > 0, it follows from (17) that
h(x(t)) > 0 for all t ∈ I(x0). Therefore, x(t) ∈ Int(C) for all
t ∈ I(x0), which implies that Int(C) is forward invariant. �

Remark 3: Inequality (16) is the essential condition to
make B a reciprocal barrier function, because it ensures that
B(x(T )) �= ∞ for any finite T ∈ I(x0), which implies that
h(x(T )) > 0 for any T ∈ I(x0) if h(x0) > 0.

Remark 4: Note that the function considered in (6), subject
to the condition (8) for some γ > 0, is a RBF by Def. 1. This
follows from the fact that

α(r) =

⎧⎪⎨
⎪⎩

1

− log
(

r
1+r

) if r > 0

0 if r = 0.

is a class K function. Therefore, in Def. 1, we choose α1(r) =
α2(r) = α(r) and α3(r) = γα(r). Note also that the function
(9) satisfying (8) is also a RBF with class K functions α1(r) =
α2(r) = r and α3(r) = γr.

B. Zeroing Barrier Functions

Intrinsic to the notion of RBF is the fact, formalized in (10),
that such a function tends to plus infinity as its argument ap-
proaches the boundary of C. Unbounded function values, how-
ever, may be undesirable when real-time/embedded implemen-
tations are considered. Motivated by this and the barrier certifi-
cates in [18], we study a barrier function that vanishes on the
boundary of the set C. This is facilitated by first defining the
notion of an extended class K function.

Definition 2: A continuous function α : (−b, a) →
(−∞,∞) is said to belong to extended class K for some
a, b > 0 if it is strictly increasing and α(0) = 0.

Definition 3: For the dynamical system (1), a continuously
differentiable function h : Rn → R is a zeroing barrier function
(ZBF) for the set C defined by (2)–(4), if there exist an extended
class K function α and a set D with C ⊆ D ⊂ Rn such that, for
all x ∈ D,

Lf h(x) ≥ −α(h(x)). (18)

Remark 5: Defining h on a set D larger than C allows one
to consider the effects of model perturbations. This idea is de-
veloped in the conference submission [39], where it is also
illustrated on a realistic problem.

Remark 6: A special case of (18) is

Lf h(x) ≥ −γh(x), (19)

for γ > 0. This leads to a convex problem when seeking barrier
functions with numerical means, such as sum of squares (SOS)
[10].

Similar to Theorem 1, existence of a ZBF implies the forward
invariance of C, as shown by the following theorem.

Proposition 1: Given a dynamical system (1) and a set C
defined by (2)–(4) for some continuously differentiable function
h : Rn → R, if h is a ZBF defined on the set D with C ⊆ D ⊂
Rn , then C is forward invariant.

Proof: Note that for any x ∈ ∂C, ḣ(x) ≥ −α(h(x)) = 0.
According to Nagumo’s theorem [44], [45], the set C is for-
ward invariant. �

Remark 7: As stated in Remark 3, what makes function B
of Def. 1 a barrier is that B(x(T )) <∞ for any finite T ∈
I(x(t0)). Here, what makes function h of Def. 3 a barrier is that
h(x(T )) > 0 for any finite T ∈ I(x(t0)).

For a ZBF h defined on a set D, if D is open, then h induces
a Lyapunov function VC : D → R+

0 defined by

VC(x) =

{
0, if x ∈ C,

−h(x), if x ∈ D\C. (20)

It is easy to see that: 1) VC(x) = 0 for x ∈ C; 2) VC(x) > 0 for
x ∈ D\C; and 3) Lf VC(x) satisfies the following inequality for
x ∈ D\C:

Lf VC(x) = −Lf h(x) ≤ α ◦ h(x) = α(−VC(x)) < 0,

where α is the extended class K function introduced in Def. 3.
It thus follows from these three properties, from the fact that VC
is continuous on its domain and continuously differentiable at
every point x ∈ D\C, and from2 Theorem 2.8 in [46] that the
set C is asymptotically stable whenever (1) is forward complete
or the set C is compact. This is summarized in the following
result.

Proposition 2: Let h : D → R be a continuously differen-
tiable function defined on an open set D ⊆ Rn . If h is a ZBF
for the dynamical system (1), then the set C defined by h is
asymptotically stable. Moreover, the function VC defined in (20)
is a Lyapunov function.

Note that asymptotic stability of C implies forward invariance
of C as described in [39]. Therefore, existing robustness results
in the literature (such as [47], [48]) can be used to characterize
the extent to which forward invariance of the set C is robust with
respect to different perturbations on the dynamics (1). The reader
is referred to [39] for further discussion and an application.

C. Relationships of RBFs, ZBFs and Set Invariance

Theorem 1 and Prop. 1 in the two previous subsections show
that the existence of a RBF (resp., a ZBF) is a sufficient condition
for the forward invariance of Int(C) (resp., C). This section
investigates cases where the converse holds and other relations
among these two types of barrier functions.

Proposition 3: Consider the dynamical system (1) and a
nonempty, compact set C defined by (2)–(4) for a continuously
differentiable function h. If C is forward invariant, then h|C is a
ZBF defined on C.

Proof: We take D = C in Def. 3. For any r ≥ 0, the set
{x|0 ≤ h(x) ≤ r} is a compact subset of C. Define a function

2While Theorem 2.8 requires the function V to be smooth, V can always be
smoothed as shown in Proposition 4.2 in [46].
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α : [0,∞) → R by

α(r) = − inf
{x|0≤h(x)≤r}

Lf h(x).

Using the compactness property stated above and the continuity
of Lf h, α is a well defined, non-decreasing function on R+

0
satisfying

Lf h(x) ≥ −α ◦ h(x), ∀x ∈ C.
By Nagumo’s theorem [44], [45], the invariance of C is equiv-

alent to

h(x) = 0 ⇒ Lf h(x) ≥ 0,

which implies that α(0) ≤ 0. There always exists a class K
function α̂ defined on [0,∞) that upper-bounds α, yielding
ḣ(x) ≥ −α̂(h(x)) for all x ∈ C. This completes the proof. �

Propositions 1 and 3 together show that a set C is forward
invariant if, and only if, it admits a ZBF. Before addressing ne-
cessity for RBFs, a lemma is given. The shorthand notation ḣ(x)
is used for Lf h(x), analogous to common usage for Lyapunov
functions.

Lemma 2: Consider the dynamical system (1) and a
nonempty, compact set C defined by (2)–(4) for a continuously
differentiable function h. If ḣ(x) > 0 for all x ∈ ∂C, then for
each integer k ≥ 1, there exists a constant γ > 0 such that

ḣ(x) ≥ −γhk (x), ∀x ∈ Int(C).

Proof: Because C = Int(C) and C is nonempty, we have
Int(C) �= ∅. Furthermore, because ḣ(x) > 0 for all x ∈ ∂C, by
the continuity of ḣ, there exists ε0 > 0 such that ḣ(x) > 0 for
all x ∈ Q � C where Q := (Bε0 (0) ⊕ ∂C) ∩ Int(C) is an open
set contained in Int(C). It follows that ḣ(x) ≥ −γ′hk (x) holds
for any x ∈ Q and any constant γ′ > 0, because the left hand
side is non-negative and the right hand side is non-positive.

Note that C\Q is a compact subset because C is compact;

moreover, − ḣ
hk

is well-defined and continuous in C\Q. Hence,

we can choose some constant γ′′ ≥ max{x|x∈C\Q} − ḣ(x)
hk (x) , such

that ḣ(x) ≥ −γ′′hk (x) holds for any x ∈ C\Q.
Taking γ = γ′′, we have ḣ(x) ≥ −γhk (x) for any x ∈

Int(C), which completes the proof. �
Based on the lemma, we have the following theorem.
Theorem 2: Under the assumptions of Lemma 2, B = 1

h :
Int(C) → R is a RBF and h : C → R is a ZBF for C.

Proof: Let k = 3 in Lemma 2. Then there exists γ1 > 0
such that for all x ∈ Int(C), ḣ ≥ −γ1h

3 holds, which implies

that − ḣ
h2 ≤ γ1h holds, or equivalently, Ḃ ≤ γ1

B holds. By Def-
inition 4, B = 1

h is a RBF for C.
Let k = 1 in Lemma 2. Then there exists γ2 > 0 such that for

all x ∈ Int(C), ḣ ≥ −γ2h holds. By Definition 3, h is a ZBF
defined on C. �

Remark 8: The assumption ḣ(x) > 0 for all x ∈ ∂C is called
contractivity in [45], because the flow on the boundary of
C points inward. Without the compactness assumption on C,
counterexamples to Thm. 2 can be given. Consider a dynam-
ical system on R2 given by ẋ1 = − 1

2x2 , ẋ2 = −x3
1 + 1. De-

fine C = {x|h(x) ≥ 0}, where h(x) = x2 − x2
1 . Note that C is

forward invariant because for any x ∈ ∂C, ḣ(x) = 1 > 0.
Clearly, C is not compact and ḣ = ẋ2 − 2x1 ẋ1 = x1(x2 −
x2

1) + 1. For any r > 0,

inf
{x|h(x)=r}

ḣ(x) = inf
{x|h(x)=r}

x1r + 1 = −∞.

Consequently, there cannot exist an extended K function α such
that ḣ ≥ −α(h), which implies that h cannot be a ZBF for C.
Similarly, it is also impossible to find a class K function α3 such
that− ḣ

h2 ≤ α3(h) (resp.− ḣ
h(h+1) ≤ α3(h)), which implies that

(6) (resp. (9)) cannot be a RBF for C.
The relationships of RBFs, ZBFs and the set invariance are

summarized in Fig. 1. Note that while a ZBF leads to C being
invariant, when C is contractive, Int(C) is also invariant.

III. CONTROL BARRIER FUNCTIONS

While barrier functions are important tools to verify invari-
ance of a set, they cannot be directly used to design a controller
enforcing invariance. By drawing inspiration on how Lyapunov
functions were extended to control Lyapunov functions (by
Sontag), we propose in this section a similar extension of barrier
functions to control barrier functions (CBFs). It is important to
note that CBFs have been considered in the context of existing
notions of barrier certificates [1], [6], [11]. The construction
presented here differs due to the novel RBF condition (11) and
the ZBF condition (18), which increases the available control
inputs that satisfy the CBF condition. Ultimately, the true use-
fulness of this will be seen when CBFs are unified with control
Lyapunov functions through quadratic programs in Section IV.

A. Reciprocal Control Barrier Functions

Consider an affine control system

ẋ = f(x) + g(x)u, (21)

with f and g locally Lipschitz, x ∈ Rn and u ∈ U ⊂ Rm . Later,
we will be particularly interested in the case that U can be
expressed as a convex polytope,

U = {u ∈ Rm |A0u ≤ b0}, (22)

where A0 is a p×m matrix and b0 is a p× 1 column vector of
constants with p some positive integer.

When the set Int(C) is not forward invariant under the natural
dynamics of the system, ẋ = f(x), how can a controller be spec-
ified that will ensure the invariance of Int(C)? This motivates
the following definition.

Definition 4: Consider the control system (21) and the
set C ⊂ Rn defined by (2)–(4) for a continuously differen-
tiable function h. A continuously differentiable function B :
Int(C) → R is called a reciprocal control barrier function
(RCBF) if there exist class K functions α1 , α2 , α3 such that,
for all x ∈ Int(C),

1
α1(h(x))

≤ B(x) ≤ 1
α2(h(x))

(23)

inf
u∈U

[LfB(x) + LgB(x)u− α3(h(x))] ≤ 0. (24)
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The RCBF B is said to be locally Lipschitz continuous if α3
and ∂B

∂x are both locally Lipschitz continuous.
Given a RCBF B, for all x ∈ Int(C), define the set

Krcbf (x) = {u ∈ U : LfB(x) + LgB(x)u− α3(h(x)) ≤ 0}.
Considering control values in this set allows us to guarantee
the forward invariance of C via the following straightforward
application of Theorem 1.

Corollary 1: Consider a set C ⊂ Rn be defined by (2)–(4)
and let B be an associated RCBF for the system (21). Then any
locally Lipschitz continuous controller u : Int(C) → U such
that u(x) ∈ Krcbf (x) will render the set Int(C) forward in-
variant.

B. Zeroing Control Barrier Functions

Def. 2 for ZBFs leads to the second type of control barrier
function.

Definition 5: Given a set C ⊂ Rn defined by (2)–(4) for a
continuously differentiable function h : Rn → R, the function
h is called a zeroing control barrier function (ZCBF) defined
on set D with C ⊆ D ⊂ Rn , if there exists an extended class K
function α such that

sup
u∈U

[Lf h(x) + Lgh(x)u+ α(h(x))] ≥ 0, ∀x ∈ D. (25)

The ZCBF h is said to be locally Lipschitz continuous if α and
the derivative of h are both locally Lipschitz continuous.

Given a ZCBF h, for all x ∈ D define the set

Kzcbf (x) = {u ∈ U : Lf h(x) + Lgh(x)u+ α(h(x)) ≥ 0}.
Similar to Corollary 1, the following result guarantees the

forward invariance of C.
Corollary 2: Given a set C ⊂ Rn defined by (2)–(4) for a

continuously differentiable function h, if h is a ZCBF on D,
then any Lipschitz continuous controller u : D → U such that
u(x) ∈ Kzcbf (x) will render the set C forward invariant.

Remark 9: Note that control u(x) ∈ Krcbf (x) (or u(x) ∈
Kzcbf (x)) will not necessarily render the closed-loop system of
(21) forward complete, but only ensures that ifx0 ∈ Int(C), then
x(t) ∈ Int(C) for all t ∈ Iu (x0). Here, Iu (x0) is the maximal
time interval for the closed-loop system of (21) with control
u(x) ∈ Krcbf (x) (resp. u(x) ∈ Kzcbf (x)).

C. Higher Relative Degree

In the preceding two subsections, if the function h has a
relative degree greater than 1, thenLgh = 0 and the setKrcbf (x)
or Kzcbf (x) trivially equals to U or the empty set. When h has
a relative degree r ≥ 2, the following proposition shows how to
design a RCBF for C.

Proposition 4: Consider the control system (21) with U =
Rm . Consider also a set C ⊂ Rn defined by (2)–(4) for a
function h with relative degree r ≥ 2, namely, h is r-times
continuously differentiable and ∀ x ∈ Int(C), LgLkf h(x) =

0, for 0 ≤ k ≤ r − 2, and LgL
(r−1)
f h(x) �= 0. Then for any

constant Hmax > 0 and continuously differentiable function

H : R → R+
0 satisfying

(i) 0 ≤ H(λ) ≤ Hmax , ∀ λ ∈ R, (26)

(ii)
dH(λ)
dλ

�= 0, ∀ λ ∈ R, (27)

the function Br : Int(C) → R+
0 defined by

Br :=
1
h

+H ◦ L(r−1)
f h

is a RCBF.
Proof: For all x ∈ Int(C),

1
h(x)

≤ Br (x) ≤ 1
h(x)

+Hmax

and thus
1

α1(h(x))
≤ Br (x) ≤ 1

α2(h(x))
,

where α1(ξ) := ξ and

α2(ξ) :=

⎧⎪⎨
⎪⎩

0 If ξ = 0
1

1
ξ +Hmax

If ξ > 0

are both class K functions. Thus, condition (23) is satisfied. By
the chain rule,

LgBr =
(
dH

dλ
◦ L(r−1)

f h

)(
LgL

(r−1)
f h

)
. (28)

Because h has relative degree r and (27) holds, it follows that
Br has relative degree one. Therefore, for any class K func-
tion α3 , and for any x ∈ Int(C), there exists u ∈ Rm such
that LfBr (x) + LgBr (x)u ≤ α3(1/Br (x)), and thus condi-
tion (24) holds. Therefore, Br is a RCBF. �

An example for H is H(λ) = atan(λ) + π
2 ∈ (0, π2 ), where

dH
dλ

= 1
1+λ2 �= 0 for any λ. Another means to construct RCBFs

for h with relative degree r ≥ 2 is given in [49], where a
backstepping-inspired method for its construction is provided.

Remark 10: For ZCBF h with relative degree r ≥ 2, replace
(26) by there exists Hmin > 0, Hmax > 0 and

Hmin ≤ H(λ) ≤ Hmax , ∀ λ ∈ R. (29)

Then for any H(λ) satisfying (29) and (27), the function
(H ◦ L(r−1)

f ) · h is a ZCBF defined on C. See also [50] for
an alternative approach.

Remark 11: Note that if U �= Rm , i.e., there are constraints
on the input u, then the construction shown above for higher
relative degree h may no longer be valid. Designing CBFs in
this case remains an open question.

IV. QPS FOR MEDIATING SAFETY AND PERFORMANCE

In this section, we address the following question: how to
select, among the control inputs that enforce the safety re-
quirement, an input that also enforces liveness/stability? We
begin with a brief overview of exponentially stabilizing control
Lyapunov functions in the context of nonlinear systems. This
formulation naturally leads to a quadratic program (QP) that
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allows for the unification of control Lyapunov functions for
performance and control barrier functions for safety.

In the following, the dynamics of the system are given by a
nonlinear affine control system of the form

(
ẋ1

ẋ2

)
=

(
f1(x1 , x2)

f2(x1 , x2)

)

︸ ︷︷ ︸
f (x)

+

(
g1(x1 , x2)

0

)

︸ ︷︷ ︸
g(x)

u

where x1 ∈ X ⊂ Rn1 are controlled (or output) states, x2 ∈
Z ⊂ Rn2 are the uncontrolled states, with n1 + n2 = n, and
U ⊂ Rm is the set of admissible control values for u. In ad-
dition, we assume that f1(0, x2) = 0, i.e., that the zero dy-
namics surface Z defined by x1 = 0 with dynamics given by
ẋ2 = f2(0, x2) is invariant, and we assume adequate smooth-
ness assumptions on the dynamics so that solutions are well
defined.

A. Control Lyapunov Functions

Definition 6: [20] A continuously differentiable functionV :
X × Z → R is an exponentially stabilizing control Lyapunov
function (ES-CLF) if there exist positive constants c1 , c2 , c3 > 0
such that for all x = (x1 , x2) ∈ X × Z, the following inequal-
ities hold,

c1‖x1‖2 ≤ V (x) ≤ c2‖x1‖2 , (30)

infu∈U [Lf V (x) + LgV (x)u+ c3V (x)] ≤ 0. (31)

The existence of an ES-CLF yields a family of controllers that
exponentially stabilize the system to the zero dynamics [16]. In
particular, consider the set

Kclf (x) = {u ∈ U : Lf V (x) + LgV (x)u+ c3V (x) ≤ 0}.
It follows that a locally Lipschitz controller u : X × Z → U
satisfies

u(x) ∈ Kclf (x) ⇒ ‖x1(t)‖ ≤
√
c2
c1
e−

c 3
2 t‖x1(0)‖.

When U = Rm , Freeman and Kokotovic introduced the min-
norm controller, u∗(x), defined pointwise as the element of
Kclf (x) having minimum Euclidean norm [51]. The min-norm
controller can be interpreted as the solution of a quadratic pro-
gram (QP). Importantly, by using the QP formulation, it is
straightforward to include bounds on the control values [52],
[22], such as those given in (22), namely

u∗(x) = argmin
u∈Rm

1
2
u�u

s.t. Lf V (x) + LgV (x)u ≤ −c3V (x), (32)

A0u ≤ b0 .

The QP-form of the controllers have been executed in real-
time to achieve bipedal walking [22], [21] on a human-sized
robot and on scale cars [53], with sample rates of 200 Hz to
1 kHz.

B. Combining CLFs and CBFs via QPs

A distinct advantage of the QP perspective is that it allows for
the unification of control performance objectives (represented
by CLFs) subject to the trajectories belonging to desired “safe”
sets (as dictated by CBFs). By relaxing the constraint repre-
sented by the CLF condition (31), and adjusting the weight on
the relaxation parameter, the QP can mediate the tradeoff be-
tween performance and safety, with the safety being guaranteed.

Specifically, given a RCBF B associated with a set C defined
by (2)–(4) and an ES-CLF V , they can be combined into a single
controller through the use of a QP of the following form3

u∗(x) = argmin
u=(u,δ)∈Rm ×R

1
2
u�H(x)u + F (x)�u

(CLF-CBF QP)

s.t. Lf V (x) + LgV (x)u+ c3V (x) − δ ≤ 0, (33)

LfB(x) + LgB(x)u− α(h(x)) ≤ 0, (34)

where c3 > 0 is a constant, α belongs to class K, H(x) ∈
R(m+1)×(m+1) is positive definite, and F (x) ∈ Rm+1 .

The following theorem4 provides a sufficient condition for
u∗(x) to be locally Lipschitz continuous in Int(C), thereby
guaranteeing local existence and uniqueness of solutions to the
closed-loop system, and the applicability of Corollaries 1 and 2.

Theorem 3: Suppose that the following functions are all lo-
cally Lipschitz: the vector fields f and g in the control system
(21), the gradients of the RCBFB and CLFV , as well as the cost
function termsH(x) and F (x) in (CLF-CBF QP). Suppose fur-
thermore that the relative degree one condition,LgB(x) �= 0 for
all x ∈ Int(C), holds. Then the solution, u∗(x), of (CLF-CBF
QP) is locally Lipschitz continuous for x ∈ Int(C). Moreover,
a closed-form expression can be given for u∗(x).

Proof: The proof is based on [54] [Ch. 3], which as a special
case includes minimization of a quadratic cost function subject
to affine inequality constraints.

Define

y1(x) = [LgV (x),−1]�, p1(x) = −Lf V (x) − c3V (x),

y2(x) = [LgB(x), 0]�, p2(x) = −LfB(x) + α(h(x)),

and note that for all x ∈ Int(C), y1(x) and y2(x) are linearly
independent in Rm+1 . Because H(x) is locally Lipschitz con-
tinuous and positive definite, its inverse exists and is locally
Lipschitz continuous. Define

[ȳ1(x), ȳ2(x)] = H(x)−1[ y1(x), y2(x)
]
,[

p̄1(x)

p̄2(x)

]
=

[
p1(x)

p2(x)

]
−
[
y1(x)�

y2(x)�

]
ū(x),

3In the following sections, only RCBFs are used to formulate the QPs; how-
ever, QPs incorporating ZCBFs can be formulated in a similar way [39].

4Note that while this theorem is established for ES-CLFs in this paper, the
same results hold for classically defined CLFs as in [16].
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and
ū(x) := −H(x)−1F (x)

v := u − ū(x).

Finally, let 〈·, ·〉 define an inner product on Rm+1 with weight
matrix H(x) so that 〈v,v〉 := v�H(x)v.

The optimization problem (CLF-CBF QP) is then equivalent
to

v∗(x) = argmin
v∈Rm + 1

〈v,v〉

s.t. 〈ȳ1(x),v〉 ≤ p̄1(x),

〈ȳ2(x),v〉 ≤ p̄2(x), (35)

with
u∗(x) = v∗(x) + ū(x). (36)

From [54] [Ch. 3], the solution to (35) is computed as fol-
lows. LetG(x) = [Gij (x)] = [〈ȳi(x), ȳj (x)〉], i, j = 1, 2 be the
Gram matrix. Due to the linear independence of {ȳ1(x), ȳ2(x)},
G(x) is positive definite. The unique solution to (35) is

v∗(x) = λ1(x)ȳ1(x) + λ2(x)ȳ2(x), (37)

where λ(x) = [λ1(x), λ2(x)]� is the unique solution to

G(x)λ(x) ≤ p̄(x),

λ(x) ≤ 0,

[G(x)λ(x)]i < p̄i(x) ⇒ λi(x) = 0, (38)

where [·]i denotes the i-th row of the quantity in brackets, and
the inequalities hold componentwise. Because G(x) is 2 × 2, a
closed form solution can be given. Define the Lipschitz contin-
uous function

ω(r) =

{
0, if r > 0,
r, if r ≤ 0.

r ∈ R.

For x ∈ Int(C), λ1 , λ2 can be expressed in closed form as
If: G21(x)ω(p̄2(x)) −G22(x)p̄1(x) < 0,

[
λ1(x)

λ2(x)

]
=

⎡
⎣ 0
ω(p̄2(x))
G22(x)

⎤
⎦ , (39)

Else if: G12(x)ω(p̄1(x)) −G11(x)p̄2(x) < 0,

[
λ1(x)
λ2(x)

]
=

⎡
⎣ ω(p̄1(x))

G11(x)
0

⎤
⎦ , (40)

Otherwise:

[
λ1(x)

λ2(x)

]
=

⎡
⎢⎢⎢⎣
ω(G22(x)p̄1(x) −G21(x)p̄2(x))
G11(x)G22(x) −G12(x)G21(x)

ω(G11(x)p̄2(x) −G12(x)p̄1(x))
G11(x)G22(x) −G12(x)G21(x)

⎤
⎥⎥⎥⎦ . (41)

Because the Gram matrix is positive definite, for all x ∈
Int(C), G11(x)G22(x) −G12(x)G21(x) > 0. Using standard

properties for the composition and product of locally Lips-
chitz continuous functions, each of the expressions in (39)–
(41) is locally Lipschitz continuous on Int(C). Hence, the func-
tions λ1(x) and λ2(x) are locally Lipschitz on each domain
of definition and have well defined limits on the boundaries
of their domains of definition relative to Int(C). If these limits
agree at any point x that is common to more than one bound-
ary, then λ1(x) and λ2(x) are locally Lipshitz continuous on
Int(C). However, the limits are solutions to (38), and solutions
to (38) are unique [54]. Hence the limits agree at common
points of their boundary5 (relative to Int(C)) and the proof is
complete. �

If the control objective and the barrier function do not conflict,
such as when the zero dynamics surface of the CLF has a non-
empty intersection with the safe set, an appropriate choice of
weights results in a solution of the QP with δ ≈ 0 [39]. The
mediation of safety and performance will be illustrated in the
context of the adaptive cruise control and lane keeping problems
in the following sections. The examples will also provide explicit
control barrier functions that respect constraints on the inputs,
such as those given in (22). In particular, the examples will add
a constraint of the form

A0u− b0 ≤ 0 (42)

to the QP, in addition to (33) and (34). By construction, at
each point of the safe set, there will exist a solution of the QP
satisfying all three constraints. The Lipschitz continuity of the
QP with the additional constraint (42) on the inputs, however,
is not currently assured.

V. TWO AUTOMOTIVE SAFETY PROBLEMS VIA QPS

In this section, we use Adaptive Cruise Control (ACC) and
Lane Keeping (LK) to illustrate the power of a CLF-CBF-based
QP to meet a performance objective, subject to a safety require-
ment.

A. Adaptive Cruise Control Via QPs

A vehicle equipped with ACC seeks to converge to and main-
tain a fixed cruising speed, as with a common cruise control sys-
tem. Converging to and maintaining a fixed speed is naturally
expressed as asymptotic stabilization of a set. With ACC, the
vehicle must in addition guarantee a safety condition, namely,
when a slower moving vehicle is encountered, the controller
must automatically reduce vehicle speed to maintain a guaran-
teed lower bound on time headway or following distance, where
the distance to the leading vehicle is determined with an onboard
radar. When the leading car speeds up or leaves the lane, and
there is no longer a conflict between safety and desired cruis-
ing speed, the adaptive cruise controller automatically increases
vehicle speed. The time-headway safety condition is naturally
expressible as a control barrier function. Because relaxation is
used to make the stability objective a soft constraint in the QP,

5As an example, the only non-zero solutions of (38) occur when p̄2 (x) < 0,
in which case, G21 (x)p̄2 (x) −G22 (x)p̄1 (x) = 0, and therefore (41) reduces
to (39). The other cases are similar.
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while safety is maintained as a hard constraint, safety and sta-
bility do not need to be simultaneously satisfiable. In contrast,
the approach of [1] for combining CBFs and CLFs is only ap-
plicable when the two objectives can be simultaneously met.
Simulations in Section VI will illustrate how the QP-based so-
lution to ACC automatically adjusts vehicle speed under various
traffic conditions.

1) ACC Problem Setup: We begin by setting up the dy-
namics of the problem based upon [34] and [36], which as-
sume that the lead and following vehicles are modeled as point-
masses moving in a straight line. The following vehicle is the
one equipped with ACC while the lead vehicle acts as a distur-
bance to the following vehicle’s objective of cruising at a given
constant speed.

The dynamics of the system can be compactly expressed as

ẋ =

⎛
⎝−Fr/M

aL
x2 − x1

⎞
⎠

︸ ︷︷ ︸
f (x)

+

⎛
⎝ 1/M

0
0

⎞
⎠

︸ ︷︷ ︸
g(x)

u. (43)

Here, x = (x1 , x2 , x3) := (vf , vl ,D) where vf and vl are the
velocity of the following and leading vehicle (in m/s), re-
spectively, D is the distance between the two vehicles (in
m); M is the mass of the following vehicle (in kg); Fr (x) =
f0 + f1vf + f2v

2
f is the aerodynamic drag (in N) with constants

f0 , f1 and f2 determined empirically; aL ∈ [−alg, a′lg] is the
overall acceleration/deceleration of the lead vehicle (in m/s2)
with al , a′l fractions of the gravitational constant g for decel-
eration and acceleration, respectively; u ∈ U ⊂ R, the control
input of the following car, is wheel force (in N). Initially, we
will suppose that the control input is unbounded, that is,U = R,
and later, we address realistic bounds on wheel force.

Given the model (43), we next present two constraints that
are necessary in the context of ACC.

Soft Constraints: In the context of ACC, when adequate head-
way is assured, the goal is to achieve a desired speed, vd . In other
words,

Performance : lim
t→∞ vf (t) = vd. (SC)

This translates into a soft constraint since this speed should only
be achieved in the case when safety can be assured. In terms of
a candidate CLF, the soft constraint (SC) can be written

Performance : V (x) := (vf − vd)2 .

Straightforward calculations given in [2] show that for any
c > 0, the following inequality holds,

inf
u∈R

[Lf V (x) + LgV (x)u+ cV (x)] ≤ 0,

verifying that V is a valid CLF.
Hard Constraints: These represent constraints that must not

be violated under any condition. For ACC, this is simply the
constraint: “keep a safe distance from the car in front of you”.
There are numerous formulations of this concept including Time
Headway and Time to Collision [55]. In the context of this paper,

to start with a simple formulation, we express this constraint as

Safety : D/vf ≥ τd , (HC)

where τd is the desired time headway.6

The constraint (HC) can be rewritten as

D − τdvf ≥ 0, (44)

for the dynamics (43). Correspondingly, we consider the func-
tion h(x) = D − τdvf , which yields the admissible set C as
defined in (2)–(4).

A candidate RCBF can be constructed from h as follows

B = − log
(

h

1 + h

)
. (45)

Because D − τdvf > 0 for any x ∈ Int(C), it follows that

LgB(x) =
τd

M(1 +D − τdvf )(D − τdvf )
> 0,

which implies thatB has relative degree 1 in Int(C). If the class
K functionα3 in (24) is chosen as γ/B for some constant γ > 0,
then

u(x) = − 1
LgB(x)

(
LfB(x) − γ

B(x)

)

provides a specific example of a u ∈ R satisfying

inf
u∈R

[
LfB(x) + LgB(x)u− γ

B(x)

]
≤ 0. (46)

As a result, B is a valid RCBF for U = R.
2) The CLF-CBF Based QP: As in [23], a CLF-CBF QP

is constructed by combining the above constraints in the form

u∗(x) = argmin
u=[u,δ ]�∈R2

1
2
u�Haccu + F�

accu

s.t. Aclfu ≤ bclf ,

Acbfu ≤ bcbf ,

(ACC QP)

where

Aclf = [LgV (x),−1] , bclf = −Lf V (x) − cV (x), (47)

and

Acbf = [LgB(x), 0] , bcbf = −LfB(x) +
γ

B(x)
. (48)

Remark 12: Setting δ = 0 would make the CLF constraint
“hard” in that it would force exact exponential convergence at a
rate of c, and in such a case, if there were no inputs satisfying
both the CLF constraint and the RCBF constraint, the QP would
be infeasible.

The cost function in the QP is selected in view of achieving
the control objective encoded in the CLF, i.e., achieving the
desired speed, subject to balancing the relaxation factors that
ensure solvability and continuity of (ACC QP). As explained in
[2], the CLF was constructed by first partially linearizing the

6A general rule stated in [55] is that the minimum distance between two cars
is “half the speedometer”. This translates into the hard constraint asD ≥ 1.8vf
with τd = 1.8.
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Fig. 2. Simulation results of the ACC problem based on (ACC QP) (left) speed of the lead car and the controlled car with the desired speed vd
indicated (middle) vehicle acceleration as fractions of g, with typical desired upper and lower bounds indicated (right) hard constraint (HC), where
positive values indicate satisfaction.

system through the feedback u = Fr +Mμ. As a result, the
cost relative to this control will be chosen as μ�μ, which yields
the following function in u:

μ�μ =
1
M 2

(
u�u− 2u�Fr + F 2

r

)
.

This can then be converted into the form

Hacc = 2

⎡
⎣

1
M 2 0

0 psc

⎤
⎦ , Facc = −2

⎡
⎣
Fr
M 2

0

⎤
⎦ . (49)

Here psc is the weight for the relaxation δ.
Simulation Preview: Simulation results obtained by applying

the (ACC QP) controller are developed in Section VI. A sneak
preview is shown in Fig. 2 to highlight a few properties of the
designed controller and to motivate an important refinement.
The desired cruising speed vd is set to 79.2 (km/h), which is
22 (m/s). The system (43) is initialized at (vf (0), vl(0),D(0)) =
(18, 10, 150). The left plot in Fig. 2 shows the desired cruising
speed as a thick dashed line and the speeds of the lead and
controlled vehicles as thin lines. The controlled vehicle achieves
the desired cruising speed when it does not conflict with the
time-headway constraint, and it settles to the speed of the lead
car when required to maintain a safe following distance. The
forward invariance of the safe set, defined by the hard constraint
(HC) encoding the desired time headway τd , is shown in the right
plot of Fig. 2. The middle plot shows typical “comfort” limits on
acceleration that should be respected by the controlled vehicle,
which are violated because no constraint has been imposed on
the wheel force that can be requested by the QP when the car
accelerates and brakes. This motivates the development of a
refined barrier function that is compatible with bounds on the
two vehicles’ inputs.

3) Force Constraints and CBFs: The QP formulated in
Subsection V-A2 generates a control input u ∈ R for the ACC-
controlled vehicle. In practice, however, the wheel force that can
be generated by the car is constrained by physical limits (e.g.,
the maximal engine torque for acceleration, maximal braking
capability, and road conditions). This requires the admissible
set U to be bounded. Furthermore, to guarantee driver comfort,
the wheel forces the controller is allowed to apply are typically
much less than the maximal forces that can be generated by the
vehicle.

Force Constraints: We now constrain the allowable wheel
forces. Supposing that we do not want to accelerate or decelerate
more than some fraction of g, the gravitational constant, we
can write the constraints on acceleration and deceleration as
inequalities

u ≤ a′fMg, −u ≤ afMg. (FC)

where af and a′f are the fractions of g for deceleration and
acceleration, respectively. That is, the input set is now:

Uacc := [−afMg, a′fMg].

Since it may be the case that these constraints will conflict
with the torque values needed to satisfy the hard constraint (HC),
we require a force-based barrier function allowing the hard con-
straints and force constraints to be simultaneously satisfied. In
particular, we seek a function hF (x) such that for all x ∈ CF ,
where CF = {x |hF (x) ≥ 0}, there exists a trajectory of (43)
satisfying (HC) and the maximum braking limit (FC). That is
to say, within the set CF , the ACC-equipped car can always
brake to maintain a desired headway using an allowed amount
of deceleration.

Reference [56], an extended version of this paper, develops
two CBFs7, hcF and hoF , that can be used to define the safe set
CF . The function hcF has a much simpler form8 than hoF , but
makes a more conservative approximation of the safe set than
hoF . When rolling resistance is ignored in the model (43), hoF
provides the maximal safe set compatible with (48) and the force
bounds (FC), and will therefore be referred to as “optimal”. The
functions hoF and hcF in turn define the optimal RCBF Bo

F and
the conservative RCBF Bc

F , respectively, using (6) or (9). The
force-based hard constraints are ultimately expressed via (FC)
together with the condition

LfBF (x) + LgBF (x)u− γ

BF (x)
≤ 0. (FCBF)

4) Modified CLF-CBF Based QP: Incorporating
(FCBF) and (47), we have the modified force-based

7The functions are piecewise defined by a set of continuously differentiable
functions; more details are given in [57].

8When the speed of the lead car is constant (i.e., aL = 0), and v > vl , then
hcF reduces to the formula given in [2].
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CLF-CBF QP:

u∗(x) = argmin
u=[u,δ ]�∈Ua c c×R

1
2
u�Haccu + F�

accu

s.t. Aclfu ≤ bclf ,

Afcbfu ≤ bfcbf , (ACC-QP2)

Afcu ≤ bfc .

The soft constraints yield the same Aclf , bclf as (47). The
comfort constraints in (FC) yields Afc , bfc as

Afc =

[
1 0
−1 0

]
, bfc =

[
a′fMg

afMg

]
. (51)

By condition (FCBF), the force constraints yield

Afcbf = [LgBF (x), 0] , bfcbf = −LfBF (x) +
γ

BF (x)
.

The cost function is the same as in (49). Simulation results
obtained by applying the (ACC-QP2) controller and its compar-
ison with the (ACC QP) controller are provided in Section VI.

B. Lane Keeping Via QPs

In this subsection, we consider the Lane Keeping (LK) prob-
lem using a CBF-based QP, which aims to keep the vehicle
“centered” in a possibly curved lane. We focus on the lateral
movement of the vehicle by assuming that the vehicle has a
constant longitudinal speed [38].

1) Lane Keeping Problem Setup: Under the assump-
tions of constant longitudinal speed and a linear tire-force
model, a two-state handling model can be augmented to the
four-state lateral-yaw model given in (50) [38]. In the model,
the state is x := (y, ν, ψ, r), where y and ψ are the lateral dis-
placement and the error yaw angle in road fixed coordinates,
respectively, ν is the lateral velocity, and r is the yaw rate (ro-
tation rate about the vertical axis). The input u is the steering
angle of the front tires, and the disturbance is the desired yaw
rate rd , which can be calculated from the curvature of the road
by rd = v0

R , where v0 is a constant value for the longitudinal
velocity and R is the road radius of curvature. Additionally, M
is the total mass of the car, Iz is the moment of inertia about the
center of mass, a and b are the distance from the center of mass
to the front and rear tires, respectively, and Cr and Cf are tire
(stiffness) parameters.

The objective of the LK problem is to provide a steering
input that keeps the car “centered” in the lane. Particularly, the
car should satisfy the following hard control objective and the
acceleration constraint.

Hard Constraint: This constraint requires the displacement
of the vehicle from the center of the lane to be less than a given
constant ymax :

|y| ≤ ymax . (LK-HC)

Since the width of US lanes is 12 feet and typical width of a car
is 6 feet, we can take ymax to be 3 feet, which is approximately
0.9 meters. Therefore, the hard constraint is |y| ≤ 0.9.

Acceleration Constraint: Due to the force limit of the car and
for the comfort of the driver, the lateral acceleration needs to be
bounded. We express this constraint as

|ÿ| ≤ amax . (LK-FC)

2) Encoding LK Constraints: The hard and accelera-
tion constraints can be encoded formally as follows.

Encoding Acceleration Constraint: Since

Mÿ := Cf

(
u− ν + ar

v0

)
− Cr

ν − br

v0
−Mv0rd, (52)

the acceleration constraint (LK-FC) is equivalent to

u ∈ Ulk :=
[

1
Cf

(−Mamax + F0),
1
Cf

(Mamax + F0)
]

where F0 = Cf
ν+ar
v0

+ Cr
ν−br
v0

+Mv0rd .
Encoding Hard Constraint: Suppose that at time 0, the lateral

displacement is y(0) and the lateral velocity is ẏ(0). Under the
maximal allowable acceleration, it takes time T for the lateral
speed to be reduced to zero, where T = |ẏ (0)|

am a x
. Then,

y(T ) = y(0) + T ẏ(0) − sgn(ẏ(0))
2

T 2amax

= y(0) +
1
2
|ẏ(0)|
amax

ẏ(0).

Motivated by the above formula, define

hF (x) = (ymax − sgn(ẏ) y) − 1
2
ẏ2

amax
(53)

and CF := {x|hF (x) ≥ 0}. Then, for every x ∈ CF , the con-
trolled vehicle can remain in CF while keeping the acceleration
within the allowable set (LK-FC). Indeed, differentiating (53)
for ẏ �= 0 yields

ḣF (x, u) = −
(

sgn(ẏ) +
ÿ

amax

)
ẏ. (54)

It follows that if ẏ > 0, then ḣF (x, u) ≥ 0 when u =
1
Cf

(−Mamax + F0), and if ẏ < 0, then ḣF (x, u) ≥ 0 when

u = 1
Cf

(Mamax + F0). Finally, from (53), the limit of ḣF as ẏ
tends to zero is well defined and equals zero. Taking BF as (6)

⎡
⎢⎢⎢⎣
ẏ

ν̇

ψ̇

ṙ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 v0 0

0 −Cf + Cr
Mv0

0
bCr − aCf
Mv0

− v0

0 0 0 1

0
bCr − aCf

Iz v0
0 −a

2Cf + b2Cr
Iz v0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
y

ν

ψ

r

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
Cf
M

0

a
Cf
Iz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
u+

⎡
⎢⎢⎢⎣

0
0

−1
0

⎤
⎥⎥⎥⎦ rd (50)
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TABLE I
PARAMETER VALUES USED IN SIMULATION

M 1650 kg f1 5 N s/m ps c 102

f0 0.1 N f2 0.25 N s2 /m2 a ′
f 0.25

a 1.11 m Cf 133000 N/rad af 0.25
b 1.59 m Cr 98800 N/rad c 10
v0 27.7 m/s Iz 2315.3 m2 · kg γ 1
vd 22 m/s g 9.81 m/s2

ym a x 0.9 m am a x 0.3 × 9.81 m/s2

and γ > 0 a constant, the above calculations imply that RCBF
condition (24) holds, namely, for any x ∈ Int(CF ), there exists
u such that

LfBF (x) + LgBF (x)u− γ

BF (x)
≤ 0, (LK-FCBF)

and therefore Int(CF ) is controlled invariant.
Define CLK := Int(CF ) ∩ {x : |y| ≤ ymax}. It is easy to

prove that any feedback controller for (50) that renders Int(CF )
forward invariant also renders CLK forward invariant; the proof
is given in [56].

Remark 13: Another important fact is that a feedback con-
troller rendering CLK forward invariant with bounded lateral
acceleration ÿ results in ultimate boundedness of the yaw angle
and yaw rate. Indeed, solving (52) for u as a function of ÿ and
using ẏ = ν + ψv0 , the four-state lateral-yaw model (50) results
in[

ψ̇
ṙ

]
=

⎡
⎣ 0 1

− (a+ b)Cr
Iz

−b(a+ b)Cr
Iz v0

⎤
⎦
[
ψ

r

]

+

⎡
⎣ 0

(a+ b)Cr
Iz v0

⎤
⎦ ẏ +

⎡
⎣ 0

a
M

Iz

⎤
⎦ ÿ +

[
−1

0

]
rd. (55)

This is a linear system in companion form, driven by ẏ, ÿ and
rd . The model parameters a, b,Cr , Iz and v0 are all positive, and
hence the system is exponentially stable, and therefore input-to-
state stable [41]. The term ẏ is bounded by virtue of belonging
to CLK and the term ÿ is bounded by (LK-FC). Because the
desired yaw rate rd is bounded for bounded road curvature, it
therefore follows that ψ and r are bounded.

Feedback Control Law For Performance: To illustrate that a
number of feedback controllers can be combined with a CBF
via a QP, a linear controller u = −K(x− xf f ) is assumed here,
where xf f is a feedforward term, with details given in the simu-
lation section. Alternatively, a quadratic Lypaunov function for
the resulting closed-loop system could be used as a CLF for
the open-loop system, and the feedback design completed as in
Section V-A.

3) CBF-Based QP for LK: Incorporating (LK-FCBF)
and (LK-FC), we have the QP for lane keeping:

u∗(x) = argmin
u=[u,δ ]�∈Ul k ×R

1
2
u�Hlku + F�

lku

s.t. Alk
fcbfu ≤ blkfcbf , (LK QP)

Alk
fc u ≤ blkfc ,

u = −K(x− xf f ) + δ,

Fig. 3. Comparison of QP (ACC QP) with QP (ACC-QP2). (top) speed
of the lead car and the controlled car based on QP (ACC QP) and
(ACC-QP2) (bottom) hard constraint (HC) based on QP (ACC QP) and
(ACC-QP2) where positive values indicate satisfaction.

Fig. 4. Comparison of the input force generated from QP (ACC-QP2)
using ZCBFs and RCBFs. (top) conservative CBFs (bottom) optimal
CBFs.

whereδ is a relaxation parameter, indicating the “soft” nature of
this constraint, and Alk

fcbf , b
lk
fcbf , A

lk
fc , blkfc are derived in a similar

manner to the corresponding terms in Section V-A2.

VI. SIMULATION RESULTS

Simulation results obtained by applying the QP-mediated
controllers for ACC and LK are shown in this section. The
parameters used for the simulation are given in Table I.
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Fig. 5. Simulation results of the QP-based controller for LK problem. (left) lateral displacement with ym ax = 0.9 m (middle) lateral acceleration
with am ax = 0.3 g (right) barrier function where positive values indicate satisfaction.

A. Simulation Results for ACC

Various problem formulations are compared here. In all cases,
the system (43) is started from the initial condition x(0) =
(18, 10, 150).

1) Comparison of Two QPs: Recall that Fig. 2 showed
simulation results obtained by applying the QP controller in
(ACC QP), where the force constraints were not taken into
account. Figs. 3 and 4 show simulation results for (ACC-QP2),
where the force constraints are included.

Specifically, Fig. 3 compares (ACC QP) with (ACC-QP2) us-
ing the optimal RCBFBo

F and the conservative RCBFBc
F . Note

that, due to limits on the wheel forces, the speed converges to
vd more slowly, and begins braking earlier, as evidenced by the
top plot in Fig. 3. Since RCBFBo

F is less conservative thanBc
F ,

the car maintains a smaller following distance, but the specified
time-headway constraint is always satisfied, as indicated by the
bottom plot in Fig. 3. Moreover, when using a force-based RCBF
(45), the force constraints are satisfied for all time, as shown in
Fig. 4. Ultimately, the QP based controller (ACC-QP2) is able
to satisfy all of the control objectives and constraints for the
ACC problem outlined in Section V-A4 through a unified con-
trol methodology.

Remark 14: The conference paper [53] implements the
above QP-based controllers in a real-time embedded processor
on scaled cars. A video of the results is available on YouTube
[58].

2) Comparison of RCBFs and ZCBFs: We also con-
sider the ZCBFs for our ACC problem, which are associated
with functions hoF and hcF given in [56]. As expected, when
using the controller from the QP (ACC-QP2) with ZCBFs, all
constraints are satisfied just as with the RCBFs. Fig. 4 shows
a comparison of the generated vehicle acceleration using both
types of CBFs, for both optimal and conservative cases. Our
limited experience is that the ZCBFs generate a smoother input
trajectory (see Fig. 4), while satisfying the force constraints. We
suspect that this is due to the local Lipschitz constant of a RCBF
potentially becoming arbitrarily large near the boundary of the
safe set.

B. LK simulation

The feedback gain K was determined by solving an LQR
problem with control weightR = 600 and state weight given by

Q = KpC
�C +KdC

�A�AC, where C = [1, 0, 20, 0], Kp =
5, and Kd = 0.4. The “output” y = Cx corresponds to a lateral
preview of approximately 0.7 seconds. The feedforward term
xf f = [0, 0, 0, rd ]� reduces tracking error.

Simulation results for lane keeping are shown in Fig. 5. The
road is assumed to be curved and the longitudinal speed of the
vehicle is a constant. We can see that the absolute value of
the lateral displacement is always bounded by 0.9 m, and the
lateral acceleration is always bounded by 0.3 g. Therefore, the
displacement and acceleration constraints are both satisfied.

VII. CONCLUSION

This paper presented a novel framework for the control of
safety-critical systems through the unification of safety condi-
tions (expressed as control barrier functions) with control ob-
jectives (expressed as control Lyapunov functions). At the core
of this methodology was the introduction of two new classes
of barrier functions: reciprocal and zeroing. The interplay be-
tween these classes of functions was characterized, and it was
shown that they provide necessary and sufficient conditions on
the forward invariance of a set C under reasonable assumptions.
Therefore, in the context of (affine) control systems, this natu-
rally yields control barrier functions (CBFs) with a large set of
available control inputs that yield forward invariance of a set C.
Importantly, CBFs are expressed as affine inequality constraints
in the control input that—when satisfied pointwise in the can-
didate safe set—imply forward invariance of the set, and hence
safety. Utilizing control Lyapunov function (CLFs) to represent
control objectives—which again result in affine inequality con-
straints in the control input—safety constraints and performance
objectives were naturally unified in the framework of quadratic
program (QP) based controllers. Furthermore, continuity of the
resulting controllers was formally established by strictly enforc-
ing the safety constraint and relaxing the control objective. The
mediation of safety and performance was illustrated through
the application to automotive systems in the context of adaptive
cruise control (ACC) and lane keeping (LK).

Future work will be devoted to building upon the foundations
presented in this paper in the context of safety-critical control
of cyber-physical systems, with a special focus on robotic and
automotive systems. At a formal level, this paper developed
“force-based” barrier functions for the specific problems con-
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sidered (ACC and LK), leaving as an open problem how to
characterize and compute such functions for general classes of
control systems. In addition, formulating how to unify safety
constraints, e.g., combining ACC and LK constraints into a sin-
gle framework, has the potential to suggest methods for com-
posing safety specifications. Going beyond automotive systems,
the presented methodologies are naturally applicable to robotic
systems, e.g., in the context of self-collision avoidance, obstacle
avoidance, end-effector (and foot) placement, and a myriad of
other safety constraints. Exploring these applications promises
to provide a formal framework for safety-critical operation of
robotic systems.
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