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Abstract— This work presents a safe control design approach
that integrates the disturbance observer (DOB) and the control
barrier function (CBF) for systems with external disturbances.
Different from existing robust CBF results that consider the
“worst case” of disturbances, this work utilizes a DOB to
estimate and compensate for the disturbances. DOB-CBF-based
controllers are constructed with provably safe guarantees by
solving convex quadratic programs online, to achieve a better
tradeoff between safety and performance. Two types of systems
are considered individually depending on the magnitude of the
input and disturbance relative degrees. The effectiveness of the
proposed methods is illustrated via numerical simulations.

I. INTRODUCTION

Control barrier functions (CBFs) have emerged as one
powerful tool for ensuring control system safety in the form
of set invariance and have been successfully applied to
various autonomous and robotic systems [1]. Nevertheless,
most existing works on CBF-based control design rely on
accurate model information and state measurement, which
are usually difficult to obtain in practice. To address this
problem, robust and adaptive CBF approaches were proposed
for systems with model/measurement uncertainties and/or
external disturbances [2], [3], [4], [5], [6], [7]. Most of
the robust CBF-based methods consider the “worst case”
of disturbances and design safe controllers that are often
unnecessarily conservative.

Recently, some robust CBF control schemes based on dis-
turbance estimation and compensation techniques were pro-
posed with the goal of reducing the conservatism of the re-
lated safe controllers [8], [9], [10], [11], [12]. For example, in
[8], [9], a high-gain input disturbance observer was integrated
into the CBF framework; in [10], Gaussian processes were
employed to estimate the disturbances/uncertainties from
data and an end-to-end safe reinforcement learning scheme
was developed based on CBFs; in [11], a piecewise-constant
disturbance estimation law was proposed and integrated into
the robust CBF framework; in [12], a CBF-based safe control
law was designed for autonomous surface vehicle systems
based on the fixed-time extended state observer.

Disturbance observer (DOB) is a special class of unknown
input observers. DOBs estimate the internal and external
disturbances by using identified dynamics and measurable
states of plants, and have been widely employed in appli-
cations such as robotics, automotive, and power electronics
[13], [14], [15]. In contrast to other worst-cased-based robust
control schemes, the DOB-based methods aim to attenuate
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(a) Architecture of the proposed DOB-CBF-QP framework.

(b) Illustration of the evolution of the safe set C′.

Fig. 1: As shown in (b), trajectories of the closed-loop system
are guaranteed to stay in a set C′. Since DOB will ensure
d̂ converge to d, the set C′ keeps expanding and can be
made arbitrarily close to the original safe set, C, by choosing
parameters appropriately. In contrast, robust CBF design
based on the “worst-case” of disturbances will result in a
safe set whose size shrinks as the magnitude of disturbances
becomes larger. Note that safety, instead of input-to-state
safety, is ensured by the DOB-CBF-QP-based controller.

the influence of disturbances by compensating for the distur-
bances and achieve a better tradeoff between robustness and
performance. The majority of existing DOB-based control
schemes focus on systems whose disturbance relative degree
is higher than or equal to the input relative degree [16];
however, systems with a lower disturbance relative degree are
ubiquitous (e.g., the missile system [16] and the flexible joint
manipulator [17]), and various results were recently proposed
to design DOBs for such systems.

This paper develops a safe control design method that
integrates the DOB and the CBF for systems with external
disturbances. As shown in Fig. 1(a), a DOB is introduced to
generate an estimate of the disturbance, which is used by the
CBF-based safety filter to compensate for the disturbance.
By solving a convex quadratic program (QP) online, a safe
control law is obtained that can achieve a better tradeoff
between safety and performance. Specifically, this paper first
presents a DOB-CBF-QP-based safe control design method
for systems whose input relative degree is not higher than the
disturbance relative degree. Compared with existing results,
the proposed approach relies on milder assumptions and can
provide a robust safety guarantee even if the bound of the
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disturbances is not exactly known. This paper also establishes
two DOB-CBF-QP-based approaches for a class of systems
whose input relative degree is lower than the disturbance
relative degree, by using the recursive CBF design and the
extended DOB techniques, respectively. To the best of our
knowledge, this is the first safe control design result for such
class of systems. The remainder of this paper is organized
as follows: preliminaries about CBFs and DOBs and the
problem statement are provided in Section II, the main results
are presented in Section III, numerical simulation results are
provided to validate the proposed methods in Section IV, and
finally, the conclusion is drawn in Section V.

II. PRELIMINARIES & PROBLEM STATEMENT

A. Control Barrier Function

Consider a system
ẋ = f(x) + g1(x)u+ g2(x)d(t), (1)

where x ∈ Rn is the state, u ∈ Rm is the control input,
f : Rn → Rn, g1 : Rn → Rn×m and g2 : Rn → Rn×q are
known and sufficiently smooth functions, and d(t) : R → Rq

represents the unknown external disturbance.
Suppose that h(x) : Rn → R is a sufficiently smooth

function associated with system (1). If m = q = 1, then
system (1) is said to have an input relative degree of r(1 ≤
r ≤ n) in a region D if Lg1L

r−1
f h(x0) ̸= 0, Lg1L

i
fh(x) =

0, i = 1, · · · , r − 2, for all x ∈ D, and an disturbance
relative degree of ρ(1 ≤ ρ ≤ n) if Lg2L

ρ−1
f h(x0) ̸=

0, Lg2L
j
fh(x) = 0, j = 1, · · · , ρ − 2, for all x ∈ D, where

LgsL
t
fh are Lie derivatives [16], [18], [19]. If m > 1 and/or

q > 1, then the vector input and disturbance relative degrees
can be similarly defined following [18, Section 5].

In [20] and [21], (zeroing) CBFs with different rela-
tive degrees were introduced for disturbance-free systems.
Specifically, given system (1) with g2 = 0 and a safe set
C ⊂ Rn defined by

C = {x ∈ Rn : h(x) ≥ 0}, (2)
the function h is called a CBF of (input) relative degree 1 if

sup
u

[Lfh(x) + Lg1h(x)u+ γh(x)] ≥ 0 (3)

for all x ∈ Rn, where γ > 0 is a given positive constant.
It was proven in [20] that if h(x(0)) > 0, then any
Lipschitz continuous control input u(x) ∈ {u | Lfh(x) +
Lg1h(x)u+ γh(x) ≥ 0} will ensure the forward invariance
of C. Similarly, the function h is called a CBF of (input)
relative degree r(r ≥ 2) if there exists a ∈ Rr, such that

sup
u
[Lg1L

r−1
f h(x)u+Lr

fh(x)+a⊤η(x)] ≥ 0, (4)

for all x ∈ Rn, where η(x) = [Lr−1
f h, Lr−2

f h, ..., h]⊤ ∈ Rr,
and a = [a1, ..., ar]

⊤ ∈ Rr is a set of parameters chosen such
that the roots of λr + a1λ

r−1 + ...+ ar−1λ+ ar = 0 are all
negative reals −λ1, ...,−λr < 0. The functions sk(x(t)) for
k = 0, 1, ..., r are defined recursively as

s0(x(t)) = h(x(t)), sk(x(t)) =

(
d

dt
+ λk

)
◦ sk−1. (5)

If sk(x(0)) > 0 for k = 0, 1, ..., r − 1, then any Lipschitz
continuous control input u(x) ∈ {u | Lg1L

r−1
f h(x)u +

Lr
fh(x) + a⊤η(x) ≥ 0} will ensure the forward invariance

of C [21], [22].

B. Disturbance Observer & Extended Disturbance Observer

1) Disturbance Observer: We follow the results of [23] to
introduce the DOB that will be used for safe control design
in Section III. A standard assumption for DOB is given first.

Assumption 1: The disturbance d(t) and its derivative ḋ(t)
are bounded by known positive constants, i.e., ∥d(t)∥ ≤ ω0

and ∥ḋ(t)∥ ≤ ω1,∀t > 0 where ω0 > 0 and ω1 > 0.
Given system (1), we consider the following DOB:{

d̂ = z + αp,

ż = −αLd(f + g1u+ g2d̂),
(6)

where d̂ is the disturbance estimation, Ld(x) is the observer
gain satisfying −x⊤Ldg2x ≤ −x⊤x for any x (e.g., Ld =
−(g⊤2 g2)

−1g⊤2 if g2(x) has a full column rank), α > 0 is a
positive tuning parameter, and p(x) is a function satisfying
∂p
∂x = Ld(x). The design of p(x) and Ld is non-trivial and
problem-specific; see [13], [14], [15] for more details.

Define the disturbance estimation error as

ed = d̂− d. (7)

Then, ėd =
˙̂
d−ḋ = ż+α ∂p

∂x ẋ−ḋ = ż+αLdẋ−ḋ. Substituting
(1) and (6) into this equality yields ėd = −αLdg2ed −
ḋ. Choose a Lyapunov candidate function V1 = 1

2∥ed∥
2.

Invoking Assumption 1 and the definition of Ld, we have

V̇1 ≤ −2κV1 +
ω2
1

2ν1
, (8)

where κ ≜ α− ν1

2 , ν1 is a constant satisfying 0 < ν1 < 2α,
and the second inequality is from the fact that ω1∥ed∥ ≤
ν1

2 ∥ed∥2+ 1
2ν1

ω2
1 . Recalling comparison lemma [19], we have

∥ed(t)∥ ≤

√
2ν1κ∥ed(0)∥2e−2κt + ω2

1(1− e−2κt)

2ν1κ
. (9)

Form (9) one can see the disturbance estimation error ed is
uniformly ultimately bounded.

2) Extended Disturbance Observer: As a generalization
of DOB, the extended DOB was proposed in [17] to estimate
the high order derivatives of disturbances. Consider the
following system

ẋ = f(x, u) + d(t) (10)

where x ∈ Rn is the state, u ∈ Rm is the control input,
and d : R → Rn is the external disturbance. Similar to
Assumption 1, we assume d and its derivatives are bounded.

Assumption 2: The disturbance d and its derivatives
d(1), ..., d(r), where r is a fixed positive integer, are
bounded by some known constants, i.e., ∥dE(t)∥ ≤ ξ0 and
∥d(r+1)(t)∥ ≤ ξ1 for any t > 0, where ξ0 > 0, ξ1 > 0, and
dE(t) ≜

[
d(0)⊤ d(1)⊤ · · · d(r)⊤

]⊤
with d(0) = d.

Consider the following extended DOB as in [17]:

d̂(i) = pi + lix, (11a)
ṗi = −li(f + d̂(0)) + d̂(i+1), (11b)

where d̂(i) denotes the estimate of d(i), li is a tuning
parameter, i = 0, 1, · · · , p, and d̂(r+1) = 0. Define d̂E(t) =
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[
d̂(0)⊤ d̂(1)⊤ · · · d̂(r)⊤

]⊤
and the estimation error

ẽd = d̂E − dE . (12)
Equations (11) can be written compactly as

˙̃ed = Aẽd +Bd(r+1), (13)
where

A =


−l0 1 0 · · · 0
−l1 0 1 · · · 0

...
...

...
...

...
−lr−1 0 0 · · · 1
−lr 0 0 · · · 0

 , B =


0
0
...
0
−1

 ,
and l0, · · · , lp are selected such that λmin(A) < 0. Define a
Lyapunov candidate function as V2 = 1

2∥ẽd∥
2. Then,

V̇2 ≤ −2κEV2+
ξ21
2ν2

, (14)

where κE ≜ −λmin(A)− ν2

2 and ν2 is a constant satisfying
0 < ν2 < −2λmin(A). Similar to (9),

∥ẽd(t)∥≤

√
2ν2κE∥ẽd(0)∥2e−2κEt+ξ21(1−e−2κEt)

2ν2κE
. (15)

It can be seen the ẽd is uniformly ultimately bounded.

C. Problem Statement

In this paper, we will consider the DOB-CBF-based safe
control design problem for two types of systems individually
depending on the magnitude of the input and disturbance
relative degrees. In the first problem, the system has an input
relative degree not higher than its disturbance relative degree.

Problem 1: Given system (1) whose input relative degree
is not higher than its disturbance relative degree, the safe
set C defined in (2), and the DOB given in (6), design a
controller u(x, d̂) such that the closed-loop system is safe
with respect to C, i.e., h(x(t)) ≥ 0 for all t ≥ 0 provided
that x(0) ∈ C.

For the second problem, we consider the following system
with a mismatched disturbance:

ẋ1 = f1(x̄2) + d,

ẋ2 = f2(x̄3),

· · ·
ẋn = fn(x̄n) + g(x̄n)u,

(16)

where xi ∈ R is the state, u ∈ R is the control input, d ∈ R is
the mismatched disturbance, and x̄i = [x1 x2 · · · xi]⊤ ∈ Ri,
i = 1, 2, · · · , n. The safe set for such a system is given as

C̃ = {(x1, · · · , xn) ∈ Rn : h(x1) ≥ 0}, (17)
where h : R → R is a Cn function. Clearly, for system (16)
with the output function h defined in (17), its disturbance
relative degree is lower than its input relative degree.

Problem 2: Given system (16) and the safe set C̃ defined
in (17), design a DOB with the estimated disturbance d̂ and
a controller u(x, d̂) such that the closed-loop system is safe
with respect to C̃ , i.e., h(x1(t)) ≥ 0 for all t ≥ 0 provided
that x̄n(0) ∈ C̃.

Remark 1: In this paper we only consider the single-
input-single-output system (16) with one disturbance due to
the page limit. However, the proposed methods can be readily

extended to more general systems, such as the nonlinear
missile model studied in Example 2. The detailed design
procedure will be given in our future work.

III. MAIN RESULTS

In this section, the main results of this paper are presented.
In Section III-A, a DOB-CBF-based QP is proposed for the
system whose input relative degree is not higher than its
disturbance relative degree. In Section III-B, two DOB-CBF-
based QPs are developed for the system whose input relative
degree is higher than its disturbance relative degree, by using
recursive CBF design and extended DOB techniques, re-
spectively; compared with the first approach, the second one
tends to have less conservative safe controller in simulation
but it requires more restrictive assumptions (see simulation
examples in Section IV).

A. DOB-CBF-QP for Solving Problem 1

In this subsection, we will present the DOB-CBF-based
safe control design method to solve Problem 1. We will
first consider the simple case where the CBF h has an input
relative degree 1, and then generalize the result to the case
where h has a higher input relative degree r(r > 1).

The following result is the first main result of this work
for the CBF h with an input relative degree 1.

Theorem 1: Consider the system (1), the safe set C de-
fined in (2), and the DOB given in (6) with d̂(0) = 0.
Suppose that Assumption 1 holds, h has an input relative
degree 1, and h(x(0)) > 0. Assume that there exist positive
constants γ, α, β > 0 such that α > γ+ν1

2 , β > ∥ed(0)∥2

2h(x(0)) , and

supu[Lfh− ∥Lg2h∥χ− ω2
1

2ν1β
− β∥Lg2

h∥2

4α−2ν−2γ + γh+ Lg1hu] ≥

0 hold true, where χ = ω0 +
√
ω2
0 +

ω2
1

2ν1κ
. Then, any

Lipschitz continuous controller, u(x) ∈ KDOB(x, d̂) ≜
{u | ψ0 + ψ1u ≥ 0} where

ψ0 = Lfh+Lg2hd̂−
ω2
1

2ν1β
− β∥Lg2h∥2

4α−2ν1−2γ
+γh,

ψ1 = Lg1h,

will guarantee h(x(t)) ≥ 0 for all t ≥ 0.
Proof: If d̂(0) = 0, then d̂(t) satisfies ∥d̂(t)∥ = ∥d(t)+

ed(t)∥ ≤ χ from (9). Define a new candidate CBF h̄ as
h̄(x(t), t) = βh − 1

2e
⊤
d ed where ed is defined in (7). It can

be seen h̄ ≥ 0 implies h ≥ ∥ed∥2

2β ≥ 0. Since β > ∥ed(0)∥2

2h(x(0)) ,

one can verify h̄(x(0), 0) > 0. Moreover, ˙̄h satisfies

˙̄h
(8)
≥ β(Lfh+ Lg1hu+ Lg2hd) + κe⊤d ed −

ω2
1

2ν1

= β(Lfh+ Lg1hu+ Lg2hd̂− Lg2hed) +
γ

2
e⊤d ed

+

(
α− ν1

2
− γ

2

)
e⊤d ed −

ω2
1

2ν1

= β(Lfh+ Lg1hu+ Lg2hd̂)−
ω2
1

2ν1
− β2∥Lg2h∥2

4α− 2ν1 − 2γ

+

∥∥∥∥√α− ν1
2

− γ

2
e⊤d − βLg2h

2
√
α− ν1

2 − γ
2

∥∥∥∥2
2

+
γ

2
e⊤d ed
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≥ β (ψ0 + ψ1u− γh) +
γ

2
e⊤d ed.

Therefore, any u ∈ KDOB yields ˙̄h ≥ −γβh + γ
2 e

⊤
d ed ≥

−γ
(
βh− 1

2e
⊤
d ed

)
= −γh̄, which implies that h̄(x(t), t) ≥

0,∀t ≥ 0 as h̄(x(0), 0) ≥ 0. Thus, h(x(t)) ≥ 0,∀t > 0.
The safe controller proposed in Theorem 1 is obtained by

solving the following DOB-CBF-QP:

min
u

∥u− unom∥2 (18)

s.t. ψ0 + ψ1u ≥ 0,

DOB given in (6),

where ψ0, ψ1 are given in Theorem 1 and unom is any given
nominal control law.

Remark 2: The proof of Theorem 1 reveals that, by
ensuring h̄(t) ≥ 0, x(t) is restricted to stay in a set defined
by C′(t) ≜ {x | h(x) ≥ ∥ed(t)∥2

2β }. According to (9),
the ultimate bound of ∥ed(t)∥ is ω1√

ν1(2α−ν1)
; therefore,

C′(t) will eventually converge to the set C′(∞) ≜ {x |
h(x) ≥ ω2

1

2βν1(2α−ν1)
}. By choosing the parameters α, ν1, β

appropriately (e.g., choose α or β large enough with other
parameters fixed), the set C′(∞) can be made arbitrarily close
to the original safe set C despite the unknown disturbance;
that is, the system trajectory is allowed to approach arbitrarily
close to the boundary of C (see also Fig. 1 (b)). Note that the
selection of β depends on the estimation of ed(0). In practice,
β can be selected sufficiently large such that β > ∥ed(0)∥2

2h(x(0)) .
Remark 3: The assumptions in Theorem 1 are milder than

those in [8]. If KDOB(x, d̂) is modified by dropping the
term ω2

1

2ν1β
in ψ0, then any u(x) ∈ KDOB(x, d̂) yields ˙̄h ≥

−γh̄− ω2
1

2ν1
, which implies input-to-state safety of the system

[24], [25]. Therefore, even when ω1 is not exactly known,
the proposed controller may be modified to serve as an input-
to-state safe controller; in contrast, the exact value of ω1 is
indispensable in the control design of the DOB-CBF-based
method in [8].

Now we consider the case where a CBF h has a higher
input relative degree r(r > 1). To simplify the expression,
we assume u and d in (1) are scalars; however, the proposed
method can be readily extended to the case where u and d are
vectors. In Section IV, we will present a robot manipulator
example whose input and disturbance are both vectors.

Theorem 2: Consider the system (1) with dimensions
m = q = 1, the safe set C defined in (2), and the DOB given
in (6) with d̂(0) = 0. Suppose that Assumption 1 holds, h
has an input relative degree r(r > 1), and sk(x(0)) > 0
for k = 0, 1, ..., r − 1, where sk(x(t)) is defined in (5).
Assume that there exist a ∈ Rr, β > 0, α > λr+ν1

2 , such that

supu[L
r
fh−∥Lg2L

r−1
f h∥χ− ω2

1

2ν1β
−β∥Lg2L

r−1
f h∥2

4α−2λr−2ν +a⊤η(x)+

Lg1L
r−1
f hu] ≥ 0 and β > ∥ed(0)∥2

2sr−1(x(0))
hold true, where

a, η are defined in (4) and χ = ω0 +
√
ω2
0 +

ω2
1

2ν1κ
. Then

any Lipschitz continuous controller u(x) ∈ Kr
DOB(x, d̂) ≜

{u | ψr
0 + ψr

1u ≥ 0}, where

ψr
0=L

r
fh+Lg2L

r−1
f hd̂− ω2

1

2ν1β
−
β∥Lg2L

r−1
f h∥2

4α−2λr−2ν
+a⊤η(x),

ψr
1=Lg1L

r−1
f h,

will guarantee h(x(t)) ≥ 0 for all t ≥ 0.
Proof: We define a new CBF candidate as h̄r(x, t) =

βsr−1(x)− 1
2e

⊤
d ed. It can be easily verified that selecting u ∈

Kr
DOB gives ˙̄hr ≥ −λrh̄r, and β > ∥ed(0)∥2

2sr−1(x(0))
indicates

h̄r(x(0)) ≥ 0. Therefore, one can see that h̄r ≥ 0, which
indicates h(x1(t)) ≥ 0 for any t > 0 because sk(x(0)) > 0,
k = 0, 1, · · · , r − 1 [21].

The safe controller proposed in Theorem 2 is obtained by
solving the following DOB-CBF-QP:

min
u

∥u− unom∥2 (19)

s.t. ψr
0 + ψr

1u ≥ 0,

DOB given in (6),

where ψr
0, ψ

r
1 are given in Theorem 2 and unom is any given

nominal control law.

B. DOB-CBF-QP for Solving Problem 2

In this subsection, we will present two DOB-CBF-based
safe control design methods to solve Problem 2. The first
method relies on a DOB and recursive CBF design, while the
second method is based on an extended DOB. We consider
the system (16) and the safe set defined in (17).

1) DOB and Recursive CBF-Based Method: In this
method, we design the following DOB as given in (6):

d̂ = z + αx1,

ż = −α(f1(x1, x2) + d̂),
(20)

From (20) we have ˙̂
d = −αed, where ed is defined in (7).

Define a set of functions h̄i(x̄i+1, t), i = 0, 1, · · · , n− 1 as
follows:

h̄0(x1, t)=h(x1), (21)

h̄i(x̄i+1, t)=Qi(x̄i+1, d̂)− βiV1, (22)

where V1 = 1
2e

2
d, Qi(x̄i+1, d̂), i = 1, 2, · · · , n−1, is defined

recursively as

Q1(x̄2, d̂) =
∂h

∂x1
(f1 + d̂)− 1

2β1

(
∂h

∂x1

)2

+ λ1h, (23a)

Qi(x̄i+1, d̂) =
∂Qi−1

∂x1
(f1 + d̂) +

i∑
j=2

∂Qi−1

∂xj
fj + λiQi−1

−

(
α∂Qi−1

∂d̂
+ ∂Qi−1

∂x1

)2

βi−1 (4α−2ν1−2λi)
− βi−1ω

2
1

2ν1
, (23b)

and 0 < λi < 2α−ν1, βi > 0 are tuning parameters. Define

P(x̄n, d̂) =
∂Qn−1

∂x1
(f1 + d̂) +

n−1∑
j=2

∂Qn−1

∂xj
fj −

βn−1ω
2
1

2ν1

−

(
α∂Qn−1

∂d̂
+ ∂Qn−1

∂x1

)2

βn−1 (4α−2ν1−2γ)
.
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It is easy to verify that ∂Qn−1

∂xn
is independent of d̂. Mean-

while, if x1, · · · , xn are fixed, P(x̄n, d̂) and Qn−1(x̄n, d̂)
can be represented as polynomials of d̂. Hence, one can see
that there exist functions Fi(x̄n), i = 0, 1, · · · , n − 1 and
Gj(x̄n), j = 0, 1, · · · , n such that Qn−1(x̄n, d̂) and P(x̄n, d̂)
can be expressed as

Qn−1(x̄n, d̂) = F0(x̄n) +

n−1∑
i=1

Fi(x̄n)d̂
i, (24a)

P(x̄n, d̂) = G0(x̄n) +

n∑
i=1

Gi(x̄n)d̂
i. (24b)

Theorem 3: Consider the system (16), the safe set C̃
defined in (17), and the DOB given in (20) with d̂(0) = 0.
Suppose that Assumption 1 holds, h̄i(x̄i+1(0), 0) ≥ 0, and
i = 0, 1, · · · , n−1, where h̄i is defined in (22). Assume that
there exist γ > 0, λi > 0, βi > 0 for i = 1, · · · , n− 1, such
that γ < 2α−ν1 and supu[G0+γF0−(|Gn|χn+

∑n−1
i=1 |Gi+

γFi|χi) + ∂Qn−1

∂xn
u] ≥ 0, where χ = ω0 +

√
ω2
0 +

ω2
1

2ν1κ
and

Fi, Gi are defined in (24). Then any Lipschitz continuous
controller u(x) ∈ Kre

DOB(x, d̂) ≜ {u | ψre
0 + ψre

1 u ≥ 0},
where

ψre
0 = P(x̄n, d̂) + γQn−1(x̄n, d̂),

ψre
1 =

∂Qn−1

∂xn
,

will guarantee h(x1(t)) ≥ 0 for all t ≥ 0.
Proof: We will show that h̄i ≥ 0 indicates h̄i−1 ≥ 0

for any t > 0 if h̄i−1(x̄i(0), 0) ≥ 0, i = 1, 2, · · · , n− 1.
Step 1: Note that ḣ+λ1h satisfies ḣ+λ1h = ∂h

∂x1
(f1+d̂)−

∂h
∂x1

ed + λ1h ≥ ∂h
∂x1

(f1 + d̂)− 1
2β1

(
∂h
∂x1

)2

+ λ1h− β1

2 e
2
d =

h̄1(x̄2, t), from which it can be seen that h̄1 ≥ 0 indicates
ḣ+ λ1h ≥ 0; thus, h ≥ 0 for any t > 0 as h(x1(0)) ≥ 0.

Step i (i = 2, · · · , n− 1): It can be seen that
˙̄hi−1 + λih̄i−1

(8)
≥∂Qi−1

∂x1
(f1 + d̂) +

i∑
j=2

∂Qi−1

∂xj
fj + λiQi−1 −

βi−1ω
2
1

2ν1

−
(
α
∂Qi−1

∂d̂
+
∂Qi−1

∂x1

)
ed + βi−1

(
α− ν1

2
− λi

2

)
e2d

≥∂Qi−1

∂x1
(f1 + d̂) +

i∑
j=2

∂Qi−1

∂xj
fj + λiQi−1 −

βi−1ω
2
1

2ν1

+

[ (
α∂Qi−1

∂d̂
+ ∂Qi−1

∂x1

)
2
√
βi−1

(
α− ν1

2 − λi

2

)−
√
βi−1

(
α− ν1

2
− λi

2

)
ed

]2

−

(
α∂Qi−1

∂d̂
+ ∂Qi−1

∂x1

)2

βi−1 (4α−2ν1−2λi)
≥ Qi(x̄i+1, d̂),

from which it can be seen that h̄i ≥ 0 indicates Qi ≥ 0 and
˙̄hi−1 + λih̄i−1 ≥ 0; thus, h̄i−1 ≥ 0 for any t > 0 because
h̄i−1(xi(0), 0) ≥ 0.

Step n: Similar to the steps above, one can see that
˙̄hn−1 ≥ P(x̄n, d̂) + ∂Qn−1

∂xn
u + βn−1γ

2 e2d. Selecting u ∈

Kre
DOB yields ˙̄hn−1 ≥ −γh̄n−1, which implies h̄n−1 ≥

0,∀t > 0 as h̄n−1(x̄n(0), 0) ≥ 0. Thus, h(x1(t)) ≥ 0 since
h̄i(xi+1(0), 0) ≥ 0, i = 0, 1, · · · , n− 1.
The safe controller proposed in Theorem 3 is obtained by
solving the following DOB-CBF-QP:

min
u

∥u− unom∥2 (25)

s.t. ψre
0 + ψre

1 u ≥ 0,

DOB given in (20),
where ψre

0 , ψ
re
1 are given in Theorem 3 and unom is any

given nominal control law.
2) Extended DOB-based Method: Now we will present

an alternative approach to solve Problem 2 based on the
extended DOB. Compared with the DOB-CBF-QP con-
trollers by Theorem 3, controllers obtained from this second
approach are often less conservative in simulations (see
Section IV).

Consider the system (16) and the safe set defined in (17).
Similar to (5), a set of functions wk(x̄k+1, t), k = 1, · · · , n−
1, are defined as

wk(x̄k+1, t) =

(
d

dt
+ λk

)
◦ wk−1(x̄k, t), (26)

where w0(x1, t) = h(x1) and λk > 0. Suppose that
Assumption 2 holds with r = n − 1, i.e., ∥dE(t)∥ ≤ ξ0
and |d(n)| ≤ ξ1, where dE(t) is defined in Assumption 2.
We design the following extended DOB as in (11):

d̂(i) = pi + lix1, (27a)
ṗi = −li(f1 + d̂(0)) + d̂(i+1), (27b)

where d̂(n)(t) = 0 for any t ≥ 0 and d̂(i)j denotes the estimate
of d(i)j , i = 0, 1, · · · , n−1. Suppose that there exist functions
T0(x̄n), T1(x̄n), R0(x̄n), R1(x̄n), R2(x̄n), such that

wn−1=T0(x̄n)+T1(x̄n)dE(t), (28a)
ẇn−1=R0(x̄n)+R1(x̄n)u+R2(x̄n)dE(t), (28b)

where wn−1 is defined in (26). Intuitively, condition (28)
indicates that wn−1 and ẇn−1 can be represented as the
linear combination of d and its derivatives with fixed x̄n.

Based on the extended DOB given in (27) and the condi-
tion shown in (28), the following result provides a QP-based
safe controller for solving Problem 2.

Theorem 4: Consider the system (16), the safe set C̃
defined in (17), and the extended DOB given in (27) with
d̂E(0) = 0. Suppose that Assumption 2 holds with r = n−1,
wk(x̄k+1(0), 0) > 0, k = 0, 1, · · · , n−1, and condition (28)
holds. Suppose that there exist positive constants γ > 0,
β > 0, such that 0 < γ < 2κE , β > ∥Ed(0)∥2

2wn−1(x̄n(0),0)

and supu[R0 + γT0 − ∥R2 + γT1∥χE − βξ21
2ν2

+ R1u −
(R2+γT1)

2

β(4κE−2γ) ] ≥ 0 holds true, where κE is defined in (14) and

χE = ξ0 +
√
ξ20 +

ξ21
2ν2κE

. Then any Lipschitz continuous

controller u(x) ∈ KEDOB(x, d̂
(i)
j ) ≜

{
u | ψE

0 + ψE
1 u ≥ 0

}
will guarantee h(x1(t)) ≥ 0 for all t ≥ 0, where

ψE
0 =R0+γT0+(R2+γT1)d̂E− (R2+γT1)2

β(4κE−2γ)
− βξ21

2ν2
,

ψE
1 =R1.
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Proof: If d̂E(0) = 0, then d̂E(t) satisfies ∥d̂E(t)∥ =
∥dE(t) + ẽd(t)∥ ≤ χE from (15). Define a new CBF
candidate h̄E as h̄E = wn−1 − βV2, where V2 = 1

2∥d̃E∥
2.

Since

˙̄hE
(14)
≥ R0 +R1u+R2dE + βκE∥ẽd∥2 −

βξ21
2ν2

= R0+γT0+R1u+(R2+γT1)d̂E−γ(T0+T1dE)

−(R2 + γT1)ẽd + βκE∥ẽd∥2 −
βξ21
2ν2

(28)
≥ R0 + γT0 +R1u+ (R2 + γT1)d̂E − γwn−1

+

∥∥∥∥√β
(
κE− γ

2

)
Ed −

(R2+γT1)

2
√
β
(
κE− γ

2

)∥∥∥∥2

− (R2 + γT1)2

β(4κE − 2γ)
+
γβ

2
∥ẽd∥2 −

βξ21
2ν2

. (29)

Selecting u ∈ KEDOB yields ˙̄hE ≥ −γwn−1 +
γβ
2 ∥ẽd∥2 =

−γh̄E . Note that the selection of β ensures h̄E(x̄n(0), 0) ≥
0. Thus, one can see h̄E ≥ 0 and wn−1 ≥ 0 for any t > 0.
As wk(x̄k+1(0), 0) ≥ 0, k = 0, 1, · · · , n − 1, it easy to see
that h(x1(t)) ≥ 0 for any t > 0.

The safe controller proposed in Theorem 4 is obtained by
solving the following DOB-CBF-QP:

min
u

∥u− unom∥2 (30)

s.t. ψE
0 + ψE

1 u ≥ 0,

extended DOB given in (27),

where ψE
0 , ψ

E
1 are given in Theorem 4 and unom is any given

nominal control law.

IV. SIMULATION EXAMPLES

In this section, two examples are presented to illustrate
the effectiveness of the proposed methods. The robust CBF
method proposed in [3] is used for comparison.

Example 1: Consider a 2-DOF planar robot whose dy-
namics are described by M(q)q̈+C(q, q̇)q̇+G(q) = τ + τd,
where q = [q1 q2]

⊤ ∈ R2 denote the joint angles, τ ∈ R2

is the control input, and τd ∈ R2 represents the external
disturbance satisfying ∥τd∥ ≤ 30 and ∥τ̇d∥ ≤ 50. For the
robust CBF approach, the bound of τd is also set as 30.
The physical parameters used are chosen as those in [26],
and the nominal controller is a PD controller. The following
four CBFs are employed to represent the constraints on joint
angles: h1 = q1 + 3, h2 = 3 − q1, h3 = q2 + 1, and
h4 = 2−q2. Clearly, the input relative degree of the system is
equal to the disturbance relative degree. It can be verified that
the conditions of Theorem 1 hold, so that a DOB-CBF-QP-
based controller can be obtained by solving (18) to ensure
the safety of the closed-loop system. The simulation results
are presented in Fig. 2. It can be seen that the trajectories
of the closed-loop system with the proposed DOB-CBF-QP-
based controller by solving (18) are always safe as q1, q2 stay
inside the respective safe regions bounded by the dashed red
lines; furthermore, the trajectories of the closed-loop system
are less conservative than the robust CBF approach because

the trajectories are able to track the desired trajectories (i.e.,
the green lines) much better inside the safe region.
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(a) Evolution of the joint angle q1
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(b) Evolution of the joint angle q2

Fig. 2: Simulation results of Example 1.

Example 2: Consider the longitudinal dynamics of a mis-
sile given in [16]:

α̇ = f1(α) + q + b1(α)δ + d1, (31a)
q̇ = f2(α) + b2δ + d2, (31b)
δ̇ = (1/t1)(−δ + u), (31c)

where α is the angle of attack, q is the pitch rate, δ is
the tail fin deflection, u is the control input, d1, d2 are
mismatched disturbances satisfying ∥d1∥ ≤ 30, ∥d2∥ ≤ 30,
∥ḋ1∥ ≤ 50, ∥ḋ2∥ ≤ 50, and f1(α), b1(α), f2(α) are
nonlinear known functions given in [16]. The same bounds
above are used for the robust CBF approach. It is obvious that
the disturbance relative degree of d1 is lower than the input
relative degree. Although system (31) is slightly different
from (16), the control approaches presented in Section III-
B can be easily generalized to deal with such a system.
The nominal controller is the DOB-based tracking controller
given in [16].

To avoid the stall, the proposed DOB-CBF-QP-based
controllers are employed to restrict the value of α in the
presence of disturbances. We consider two scenarios: 1) Two
CBFs are selected as h1 = 10 − α and h2 = α + 10;
in this case, the DOB-CBF-QP-based controllers both in
(25) and (30) are applicable. 2) A single quadratic CBF
h = 100 − α2 is employed; in this case, only the DOB-
CBF-QP-based controller in (25) is applicable. From the
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simulation results shown in Fig. 3, it can be seen that the
proposed safe controllers can both ensure safety (i.e., the
trajectory of α is always inside the safe regions bounded by
the dashed red lines), and the trajectories of the closed-loop
system are less conservative than the robust CBF approach
because of the better tracking performance inside the safe
region. Meanwhile, it can be observed that the DOB-CBF-
QP-based controller obtained from (30) has a better tracking
performance than that from (25).
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(a) Evolution of the angle of attack α by using
two CBFs h1 = 10− α and h2 = α+ 10
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(b) Evolution of the angle of attack α by using a
single CBF h = 100− α2

Fig. 3: Simulation results of Example 2.

V. CONCLUSION

In this paper, a new DOB-CBF-QP-based safe control
design approach was proposed for systems with external
disturbances, with the goal of achieving a better tradeoff
between safety and performance. The simulation results
demonstrate the superiority of the proposed control scheme
over existing worst-case-based robust CBF techniques.
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