On Converse Zeroing Barrier Functions

Ziliang Lyu ?, Xiangru Xu®, Yiguang Hong #, Lihua Xie ©,

2 Department of Control Science and Engineering, Tongji University, Shanghai 200092, China

> Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

¢School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore

Abstract

The paper studies the safety verification problem for nonlinear systems and focuses on the converse problem of zeroing barrier
functions (ZBFs). We establish two necessary and sufficient conditions for the existence of a ZBF by solving the converse ZBF
problem. Moreover, we also consider exponential barrier functions (EBFs), a special case of the ZBF, and provide a necessary
and sufficient condition for the existence of an EBF when the state trajectory, starting from the interior of the safe set, cannot

visit the boundary within finite time.
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1 Introduction

Safety is crucial for modern control systems [1]. Over
the past two decades, barrier functions have emerged
as a promising technique for safety analysis and con-
trol [2-6]. Barrier functions are Lyapunov-like function-
s. The essential idea behind barrier function approaches
is to impose Lyapunov-like constraints on the “change”
of the state trajectory such that the state always stays
in a safe set. In [3,7], a novel barrier function called the
zeroing barrier function (ZBF) was proposed. The ter-
m “zeroing” refers to that the barrier function vanishes
as the state reaches the boundary of the safe set. Com-
pared with the barrier certificate conditions in [2], the
ZBF is less conservative inside the safe set since it on-
ly requires a single super- or sub-level set to be forward
invariant. In [3,7], it was shown that the existence of a
ZBF is a sufficient condition for the forward invariance
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and asymptotic stability of a safe set. Invariance means
that the state starting from the safe set will always re-
main safe, while asymptotic stability implies that a state
trajectory initialized outside the safe set will eventual-
ly reach the safe set. Meanwhile, ZBFs have been wide-
ly employed in safety-critical control. For the case with
a single zeroing control barrier function (ZCBF), [3,7]
showed that the safety-critical controller synthesized by
a ZCBF quadratic program is locally Lipschitz when the
decaying rate of the ZCBF is locally Lipschitz. Recently,
numerous variants of the ZBF have been reported; see,
e.g., [8-15].

The exponential barrier function (EBF) is a special case
of the ZBF with a linear decaying rate. With this con-
cept, one can easily handle high-relative-degree safety
constraints using linear control tools [8,9,34]. Over the
past several years, EBF's have been widely used in prac-
tical safety control problems [17-20]. Compared with
the high-relative-degree ZBF's [11,13] with a nonlinear
decaying rate, the set of EBFs has been shown to be
convex [16], implying that one can use convex optimiza-
tion to synthesize an EBF. For example, sum of squares
programming algorithms were developed in [9,16,17] to
compute EBF's for polynomial nonlinear systems.

Note that all the aforementioned safety analysis and con-
trol methods rely on the knowledge of a barrier function.
However, there is no general technique for constructing
such a function for nonlinear systems. Therefore, it is
crucial to confirm the existence of a barrier function be-
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fore attempting to find one; otherwise, the search will
fail if the desired barrier function does not exist. The
answer to this question is provided by the so-called con-
verse barrier function theorems.

Motivated by the significance of ZBFs and EBFs in safe-
ty analysis and control, this paper concentrates on their
converse problems. Specifically, given a safe system, we
aim to address the following questions:

e Does the system have a ZBF?
e Does the system have an EBF?

Over the past two decades, converse barrier function
problems have been studied in [3,21-26]. In [23], the time
required for the state to reach the boundary of the safe
set was utilized to prove the existence of a barrier cer-
tificate. This approach does not require any Slater-like
conditions used in [21] or Morse-Smale vector field con-
ditions used in [22]. However, if the state does not reach
the boundary of the safe set, the converse barrier certifi-
cate therein always equates to infinity inside the safe set.
In [24,25], a Lyapunov-like analysis for set stability was
used to establish converse barrier certificate theorems.
In fact, these converse barrier certificates are constant
inside the safe set. In [3], it is shown that, if the safe set
S ={z € R" : h(z) > 0} is both compact and contrac-
tive, where h(z) is a continuously differentiable function
capturing the boundary of the safe set, then such a func-
tion h(z) is a converse ZBF. In practical applications,
many control systems involve noncompact safe sets. An
example is the adaptive cruise control problem studied
in [3,7,27], where autonomous vehicles are required to
maintain a safe distance. Additionally, all these works
have not investigated the converse EBF problem.

This paper aims at addressing the aforementioned con-
verse ZBF and EBF problems. In contrast to the most
relevant converse barrier certificate results in [23-26],
our converse barrier functions are neither infinite nor
constant. Compared with the converse ZBF result in [3],
our safe set is not required to be compact. Our contri-
butions are as follows:

o We develop two converse theorems for ZBFs. In the
first converse ZBF theorem (Theorem 1), we show that
the existence of a ZBF with a local Lipschitz decaying
rate is equivalent to that the safe set is forward invari-
ant and the state trajectory cannot reach the bound-
ary of the safe set within finite time. In the second
converse ZBF theorem (Theorem 2), we show that the
existence of a ZBF, with the corresponding decaying
rate not necessarily locally Lipschitz, is equivalent to
that the safe set is forward invariant and asymptoti-
cally stable.

e Regarding the converse EBF problem, we first reveal
the connection between EBFs and ZBF's, and then es-
tablish a converse EBF theorem (Theorem 3) to show
that the existence of an EBF is equivalent to that the

safe set is forward invariant and the state trajectory
cannot reach the boundary of the safe set.

Notations. Throughout this paper, R denotes the set
of real numbers; R>( denotes the set of nonnegative re-
al numbers. Given a set S, denote by Int(S), cl(S) and
OS the interior, the closure and the boundary of S, re-
spectively. For any z in Euclidean space, |z| is its nor-
m, and |z|s = infcs |z — 2*| denotes the point-to-set
distance from x to the set S. A continuous function ~:
R>o — R>o with v(0) = 0 is of class K (y € K), if
it is strictly increasing. A function v € K is of class
Ko (v € Kxo) if v(s) = +00 as s — +o00. A function
B :Rsg x Rsg — Rxg is of class KL (8 € KL), if for
each fixed t > 0, the mapping s — f(s,t) is of class
K, and for fixed s > 0, t — [(s,t) is decreasing to ze-
ro as t — +o0. A continuous function v : R — R with
~(0) = 0 is of extended class K (y € FK) if it is strictly
increasing. In particular, a function v € FK is of ex-
tended class Koo (7 € EK ) if y(s) = 400 as s = 400
and v(s) = —o0 as s — —o0.

2 Preliminaries

Consider the system

&= f(x) (1)

where z € R” is the state and f : R® — R” is a
continuous vector field. Denote by z(t, z¢) the solution
of system (1) with x(0) = xo. Let (=T, ,T;") be the
maximal time interval of existence of solutions for some
—00 < T, <0< T;; < +o00. We say that system
(1) is forward (or backward) complete if T = 400 (or
T, = +oco). Moreover, system (1) is complete if it is
both forward and backward complete. A set S is forward
invariant if z(t, xo) € S for all 2y € S.

Remark 1 Different from most existing works (for ex-
ample, see [3,7]), which assumed f(x) to be locally Lips-
chitz, we only require that it is continuous. This modifica-
tion allows our results to encompass safe systems whose
state trajectories may reach the boundary of the corre-
sponding safe set within finite time. A typical example is
the system under the finite-time convergent barrier func-
tion condition of [35, 36].

Denote by X, the unsafe set of system (1). Let S be a
closed set such that S (X, = 0.

Definition 1 (Safety) System (1) is safe on a set S if
S is forward invariant.

In the barrier function literature [2,3,7], the set S is char-
acterized by a continuously differentiable scalar function



h(z) as follows:

S={x e R": h(z) >0}, (2a)
0S8 = {x € R" : h(z) =0}, (2b)
Int(S) = {x € R" : h(x) > 0}. (2¢)

Definition 2 A continuously differentiable function h :
D — R is a barrier function candidate if it is such that the
set S in (2) is nonempty and does not intersect the unsafe
region X,,. Herein, D is a set such that S C D C R"™.

Remark 2 Condition (2) implies that h(x) is zero on the
boundary 0S, strictly positive within the interior Int(S),
and strictly negative in the exterior R"\S. This distin-
guishes barrier functions from set Lyapunov functions
(see, e.g., [32, Definition 2.6]), which are always equal
to zero inside the corresponding invariant set. Thanks to
(2), one can check whether the state trajectory is on the
boundary by detecting the value of h(x), which is partic-
ularly useful for safety-critical control because it enables
one to adjust the control input to ensure safety based on
both the value and the change of h(x). Moreover, condi-
tion (2) implies that h(x) is not allowed to be a constan-
t. This is significant because it is easy to find counter-
examples (see, e.qg., [30, Example 2]) showing that a con-
stant h(z) cannot certify the forward invariance of S even
though it satisfies a certain barrier function condition.

It is worth mentioning that (2) can be rewritten as below.
Lemma 1 A continuously differentiable  function

h: D — R is a barrier function candidate if and only if
there exist EK -functions ay and o such that

h(z) =0, Vo €S, (3a)
ar1(|z]arms)) < h(z) < as(|z]arms)), Vo € Int(S),

(3b)
as(—|z|s) < h(z) < ay(—l|z|s), Vz e D\S (3c)

The proof of of Lemma 1 is given in Appendix A.

Definition 3 (ZBF & EBF) A barrier function can-
didate h : D — R s

e a zeroing barrier function (ZBF) if*
Lyh(z) > —as(h(z)), Yz €D (1)

where ag € EK s called the decaying rate function;
e an exponential barrier function (EBF) if

Lyh(z) > —Mh(z), Yz €D (5)
where X > 0 is a constant.

! For any differentiable function h : R™ — R, L;h(z) :=
VV(x)f(z).

The ZBF condition (4) was originally proposed in [3, 7],
while the EBF condition (5) is a special case of (4) with
the decaying rate being locally Lipschitz.

Lemma 2 ( [3,7]) System (1) is safe on the set S if
either of the following holds:

i) there is a ZBF satisfying (2) and (4) with the corre-
sponding decaying rate az being locally Lipschitz;

it) there is a ZBF satisfying (2) and (4) with a given set
D such that S C D.

As in Lemma 2, the existence of a ZBF is a sufficient
condition for safety, when the corresponding decaying
rate ag is locally Lipschitz, or the domain D, where a
ZBF is defined, is a set such that S C D. A natural
question is whether these conclusions remain true when
as is non-Lipschitz and D is a set such that S = D. The
answer is negative. Below is a counter-example.

Example 1 Consider the system
& =—+/|z|, z(0)=xo. (6)

The safe set S = {x > 0}. By taking h(z) = z, we
have Lyh(x) = —\/|h(z)| for allx € S. Thus, the ZBF
condition given in (2) and (4) is satisfied with az being
non-Lipschitz and D = S. For each zo € Ini(S), the
solution of (6) is

2
Q@g—%ﬂ, 0<t<2ig
(t, o) = 4 0, 2T <t < 2T+ T
7%@7 2./%0 77’)2, t 2 2«/1’0 + T

for any T > 0, implying that only the solution trajectory

2
Cﬁ?—%Q,OStSZﬁﬁ
0, t>2/xg

remains in S, while there are infinite solution trajectories
leave S. Hence, system (6) is unsafe. The reason behind
this counter-example is that the solution of (6) starting
from OS is nonunique in forward time and S is an un-
stable set of (6), which results in that multiple solution
trajectories continue to move outside the safe set after
reaching 0S.

x(t,xg) =

In safety analysis and control, set asymptotical stability
is another important notion to characterize the robust-
ness of a safe system against uncertainties in the initial
condition.

Definition 4 (Set Asymptotic Stability [28]) A
closed and forward invariant set S is said to be asymp-
totically stable for the forward complete system (1) if



there exists B € KL such that

|x(t, x0)|s < B(|zols,t), YVxo €D, VE>0. (7)

In stability analysis, the set D in (7) is called the domain
of attraction. For convenience, we say that system (1) is
asymptotically stable with respect to S if S is asymp-
totically stable. The asymptotic stability of a safe set
S implies that, if the system is initialized outside S be-
cause of uncertainties, then i) the distance between x(t)
and S is bounded by S(|zo|s,0), and ii) z(¢) reaches S
eventually.

Lemma 3 ( [3,7]) System (1) is asymptotically stable
with respect to S if there is a ZBF satisfying (2) and (4)
with D being a set such that S C D.

In [3,7], it was shown that a locally Lipschitz decaying
rate function ag is helpful for the synthesis of a local-
ly Lipschitz safety-critical controller, but a safe system
may not necessarily have a ZBF with a locally Lipschitz
rate (see Example 2 in Section 3.1). To study when the
decaying rate is locally Lipschitz, we have the following
stronger definition of safety.

Definition 5 (Strong Safety) System (1) is strongly
safe on S, if it is safe on S and there is no finite time

T > 0 such that ©(T, xo) € S for all xy € Int(S).

Compared with Definition 1, the strong safety addition-
ally requires that the state starting from Int(S) cannot
visit 0S for all t < +o00. In fact, the notion of strong
safety is not new, since many existing barrier functions
can guarantee strong safety, e.g., the reciprocal barrier
functions of [27], the ZBF's of [7] with a locally Lipschitz
decaying rate, and the EBF's of [8,9,16]. Below is a s-
traightforward extension of the results in [3,7-9, 16].

Lemma 4 System (1) is strongly safe on the set S if
either of the following holds:

i) there is a ZBF satisfying (2) and (4) with a locally
Lipschitz decaying rate as;
i) there is an EBF satisfying (2) and (5).

The proof of Lemma 4 is given in Appendix B. Note that
the aforementioned lemmas are sufficiency results. The
main purpose of this paper is to investigate the necessity.

3 Main Results

This section presents three converse barrier function the-
orems to establish the connection between the existence
of a ZBF or an EBF and the safety of a nonlinear system.

3.1 Zeroing Barrier Functions

We first consider the converse ZBF problem for the
strong safety case.

Theorem 1 Suppose that system (1) is forward com-
plete and there is a closed set S such that S(\ X, = 0.
Then it is strongly safe on S if and only if there is a ZBF
satisfying (2) and (4) with the corresponding decaying
rate being locally Lipschitz.

The following lemma, motivated by [33, Corollary 2.4],
is important for proving Theorem 1.

Lemma 5 System (1) is strongly safe on S if and only if
there exist functions x1,x2 € Koo and a constant ¢ > 0
such that the solution x(t,xo) starting from any xg €
Int(S) satisfies

1 1

R SN O <>+c 8
(L, 20)| cimm\5) 1)+ |Z0] cirm\s) ®)

forallt > 0.

The proof of Lemma 5 is given in Appendix C. Now, we
are ready to prove Theorem 1.

Proof of Theorem 1. The sufficiency follows from Lem-
ma 4 (i). To prove the necessity, let ¢(7, z) be the solu-
tion of (1) passing through 2 € R™ at 7 = 0. Let

1

Wit,x)= inf —— Vzelnt(S). (9
(t:) —t<7<0 |p(T, ) |1 rr\ ) S
Clearly,
1
0<W(tz) < ———. (10)
|x|cl(]R"\S)

Let 7 € [—t,0] be the time instant such that

1

L _W(a)
|A(7, )| mm\s) (t)

Because system (1) strongly safe on S, it follows from
Lemma 5 that

1 1
Zlarms) 6T, 8(T, @))|ci@n\s)
1
<xa(=7) + xeo () +c
<xl=m) X2(|¢(T7$)|c1(w\3))
< x1(t) + x2(W(t,z)) + c.

(5om——) St+ X GeW o) +e
2zlagm\s)



which gives

1
77(7) e 2 < a(W(t,z)), Yo ent(S) (11)
|2]c1rm\5)

with
n(s) = exp {%}, a(s) = exp [Xl (X22(5) +¢)
Let
W(z) = inf a(W(t,0)) ', Vo € Int(S).  (12)
By (10)-(12), we have
1 . 1
W(m) <W(z) < a(m). (13)

Denote the upper Dini derivative of W(x) along the so-
lution of system (1) by

D*W(x)|) = limsup Wigle,z)) = W(m)

e—0+ €

With the definition of W (),

DWW ()|
— lim sup 3{ inf (W (1, 0(c, ))) * — inf a(W (1, 2)) ¢* }
>0

e—o+ € L1220

< lim sup 1{ inf a(W (t, d(e, 7)) e —inf a(W (¢, 7)) €’ }

ot € Li>e >0
—1; 1 ; t+e
= i { Vi)
p— ] t
zrzlga(W(t,x))e }

Because

W(t+e, (e, )

1
= min inf ,
{ —(t+e)<r<—e |@(T, ¢(57$))|01(Rn\5)

inf ! }
—e<7<0 [§(7, B(e, ) arm\s)

1
- min{ inf ——
—t<7<0 (T, 2)|c1(rr\S)
inf ! }
—e<7<0 ‘Qb(Ta(b(Ev@"))‘cl(R"\S)

1
=min< W(t,xz), inf
{ (t,) —e<7<0 \¢(T,¢(€7ff))|c1(u%n\5)}

< W(t ),

we have
D+W(x)|(1)
< limsup 2{ inf a(W (1)) €% — inf a(W (1) }
B }gga(W(t,x)) et hf_lﬂp ec -1
= W(zx). »
Let
U(z) = 1/W (). 5)

By (13) and (15), we have
o1([zla@ns)) < U(z) < o2(|zfa@ns)) (16)

for all z € Int(S), where

o1(5) = exp [ B Xfl(XE(;/S) + C)}
A

Because lim,_,q+ 01(s) = lim,_,o+ 02(s) = 0, both o;
and oy are K-functions. The combination of (14) and
(15) yields

W (@)D U @)y = ~U@) D W (@)l > ~U @)W ().
Thus,
DtU(z)|q1y = —o3(U(z)), Vo € Int(S) (17)

where o3(s) = s is a Lipschitz K-function. Let h(z) be
a function such that h(xz) = U(z) for all z € Int(S), and

h(z) =0 for all z € 9S. Take D = S. From (17),

DY h(a)|qy > —o3(h(x)), Va € D. (18)

According to [32, Theorem B.1], there exist a continu-
ously differentiable function h : D — R and continuous
functions p, v : D — Ry such that

\h(z) — h(z)| < p(z), Yo eD (19)
and

Lih(z) > —o3(h(z)) —v(z), Vo €D (20)

Let u(x) = Iﬁ(;)l . By substituting this into (19), we have
h(z) = 0 for all z € 38, and th(z) < h(z) < 2h(z) for
all € Int(S). Moreover, with (16) and the definition of
h(z), we obtain h(z) > 0for all z € Int(S), and h(x) =0



for all x € 9S. Hence, h(z) satisfies (2). Let v(x) be a
{ A
2

function such that v(z) = Lo3(3h(z)) for all 2 € S, and
v(z) = 0forallz € S. With (20), we can then verify (4)
with a3 = 303. Thus, h(z) is a converse ZBF satisfying
(4) with as being locally Lipschitz and D = S. O

Note that the decaying rate of a converse ZBF is not
necessarily locally Lipschitz for a safe system. As shown
in the following counter-example, it may be impossible
for a safe system to have a ZBF with a locally Lipschitz
decaying rate. Thus, the strong safety condition in The-
orem 1 cannot be relaxed.

Example 2 Consider system
i=—z'?, 2(0) = zo. (21)

Suppose that the unsafe region is X,, = {x € R: z < 0}.
Take S = {x € R:x > 0}. For any xg € S, the explicit
solution is

" (22— 26)°2 0 <t < T* ()
x =

0, t Z T (Io)
where T*(xg) = %xg/s. Thus, system (21) is safe on S
and the state trajectory x(t) reaches 0§ = {x e R : z =
0} at t = T*(zo). Now, we show that it is impossible
for system (21) to have a ZBF with a locally Lipschitz
decaying rate az. Recall that, as shown in Lemma 1, (2)
and (3) are equivalent. Hence, with (3) and the continuity
of solution, there is a sufficiently small § > 0 such that
h(x(t, zq)) is strictly decreasing for allt € (T* — 20,T*)
and xg € Int(S). For any 0 < € < ¢, there is a constant
6 € [0, 1] such that

haz(T* =6 —¢)) — h(x(T* = 9))
= |Vh@x(T*—0—¢)+ (1 —0)x(T" —9))]
X |z(T* =0 —e) —x(T* —9)|
= |Vh@x(T* —0—¢e)+ (1 —0)x(T" —9))]
X |ex(T* — )13
= Kpselex(T™ — 5)1/3| (22)

where the first equality follows from the mean value the-
orem and the second one is based on that the solution is
continuously differentiable. Moreover, from (3), the gra-
dient of h(x) is nonzero in a sufficiently small neighbour-
hood of 0S, thereby implying K, 5. > 0. Combining (4)
and (22) yields

dh(z(t)) o BT == 2) — h(a(T* ~ 9))
dt p—e_g €0t —
* _ S\1/3
— lim Kh7575|€l‘(T (5) |
e—0+ —€

= —Kpsela(T* = 6)'
> —ag(h(z(T* = 6))). (23)

Because ag is strictly increasing and locally Lipschitz,
there is a constant K > 0 such that |az(h(x(T* —9)))| <
K|x(T* — 0)|. By combining this with (23), we have
lims_,o+ |$(T* - 6)1/3| < lims_, o+ K/Kh,&e‘x(T* - 5)‘;
which contradicts that x'/3 is non-Lipschitz at x = 0.
Thus, system (21) does not have a ZBF with a locally
Lipschitz decaying rate.

Next, we consider the converse ZBF problem for safe
systems whose state trajectory may reach the boundary
of the safe set within finite time.

Theorem 2 Suppose that system (1) is forward com-
plete and there is a closed set S such that S X, = 0.
Then it is safe on S and asymptotically stable with re-
spect to S if and only if there is a ZBF satisfying (3) and
(4) with D being a set such that S C D.

Proof. The sufficiency follows from Lemma 2 and Lem-
ma 3. To prove the necessity, let ¢(7,x) be the solution
of (1) passing through x € R™ at 7 = 0. If system (1) is
safe, we have the following two cases for all € Int(S):

e infinite-time reachability: there is no finite time in-
stant 7 > 0 such that ¢(7,z) € 9S;

e finite-time reachability: there is a finite time instant
7 > 0 such that ¢(7,z) € 9S.

For the first case, it follows from the proof of Theorem
1 that there is a local Lipschitz U (z) satisfying (16) and
(17) for all z € Int(S). Additionally, because system
(1) is forward complete and asymptotically stable with
respect to the safe set S, it follows from [29, Theorem
4.17] that there is a continuously differentiable Lyapunov
function V : D — R>( such that

oa(|z]s) < V(z) < o5(]zls), (24)
LyV(z) < —o6(V(2)) (25)

for all x € D, where D is the domain of attraction
containing S, 04,05 are K. .-functions, and og is a K-
function. Moreover, og is locally Lipschitz; otherwise,
one can replace it by a locally Lipschitz function Gg(s) =

max{s, og(s)}. Let h(x) be a function such that h(z) =
U(z) for all 2 € Int(S), h(z) = 0 for all z € 8S, and
h(z) = =V (z) for all # € D\S. By combining (16), (17),
(24), and (25), we have

h(z) =0, Vz € dS, (26a)

K1(|z]amn\s)) < h(z) < ra(|zlamms)), Vo € Int(S),

(26b)

ko (—|zls) < h(z) < k1(—|z|s), Vo e D\S (26¢)
and

D+ﬂ(m)|(1) > —rs(h(z)), Yz eD (27)



where, for i = 1,2, 3, k; is a function such that «,;(0) = 0,
ki(s) = o;(s) for all s > 0, and k;(s) = —o314(—s) for
all s < 0. By applying [32, Theorem B.1] to (26) and
(27), we obtain that there exist a continuously differ-
entiable function & : D — R satisfying (19) and (20).
Take p(z) = |h(1)| . Let v(z) be a function such that
v(z) = Lrs(3 h(x )) forallz € S,v(zx) = 0forallz € 9S,

and v(z) = §ﬁ3(2h( )) for all x € D\S. Then we can
verify that such a function h(x) is a converse ZBF satis-

fying (2) and (4).
Next, we consider the second case. Let

T(z) =inf{t >0: ¢(t,x) € S} (28)
be the first time that the state trajectory ¢(t, z) starting
from any = € Int(S) reaches 0S. Clearly, T'(z) is zero
on 0§ and continuous on S. By the definition of T'(z) in

(28) and the continuity of ¢(¢, ), there is a sufficiently
small £ > 0 such that

T(¢(t,x))

Let

=T(z)—t, Vo eInt(S), Vt € [0,f]. (29)

Uz) = (T(z))7=, =€ Int(S) (30)

where ¢ € (0,1) is a constant. According to [29, Lemma
4.3], because T'(x) vanishes on S and is positive for all
x € Int(S), there exist functions 01,02 € K such that
(16) holds. Additionally, combining (29) and (30),

1 e .. T(o(e,x)) —T(x)
+ _ e ’
DTU(@)|) = 7, (T(2))™= lim_ .
1 C
=1 C(T(m)) —, Veelnt(S) (31)
which is identical to (17) with o3(s) = 1=-s° Hence,

repeating the analysis in the first case, we can verify that
there is a converse ZBF h(x) satisfying (2) and (4).

The proof is completed by combining the two cases
above. O

Remark 3 Theorem 2 differs from Theorem 1 in both
sufficient and necessary parts. For sufficiency, Theorem
2 does not require the decaying rate of a ZBF to be locally
Lipschitz. For necessity, different from the strong safety
condition in Theorem 1, Theorem 2 considers a more
general safety property, where the state trajectory may
reach the boundary of the safe set.

Remark 4 Converse theorems are fundamental for
safety analysis and control based on barrier functions, as
they address the existence problem of barrier functions,
ensuring that the search for a barrier function is not
hopeless. The most relevant works of our converse ZBF

theorems are [25-26], where converse barrier function
theorems were developed for the system

i=f(2)+d, Yro€ X, V|d| <5 (32)

with § > 0. In [23], the backward time T%(x) = sup{t <
0: ¢(t,x) € OS} required for the state trajectory &(t, x)
starting from any x € Int(S) to reach S was used to
construct a converse barrier certificate. Therein, it was
shown that h(x) = —T%,(x) is a converse barrier cer-
tificate such that Vh(z)f(z) > 0 for all z € S and
|d| < 6. With a similar idea, a converse barrier certifi-
cate theorem was proposed in [26] for differential inclu-
sions. However, if the state trajectory cannot reach 08,
the reachable time will be infinite, and thus, the corre-
sponding converse barrier certificate will be always equal
to infinity. In [25, Theorem 16], it was shown that, if S
is a forward invariant set for system (32) under distur-
bance |d| < 6, then such a set is an asymptotically stable
set for the system under smaller disturbance |d| < 6. To-
gether with the converse Lyapunov theorem, it was shown
that the function h(x) = ¢ — V(x) is a converse barrier
certificate such that Vh(z)(f(z) +d) > 0 for all z € R™
and |d| < &, where ¢ > 0 is a constant and V (z) is a con-
verse Lyapunov function with respect to S. In [24, Theo-
rem 2/, it was shown that h(t,x) = sSup_,«,<¢ |¢(7, 2)|s
18 a time- Uarymg converse barrier certificate for system
(32) such that 3 + L[ f(x) 4+ d] > 0 for allz € R"™ and
|d| < 6. It should be noted that both converse barrier cer-
tificates of [26] and [25] are constant when the state is
inside the invariant safe set, which implies that these bar-
rier certificates do not satisfy the barrier function candi-
date condition given in (2). Compared with [23-26], our
converse ZBF is neither equal to infinity nor equal to a
constant. The value of our converse ZBF increases with
the distance between the state and the boundary of the
safe set.

Now, we provide an example for the construction of a
converse ZBF when the state trajectory x (¢, zg) starting
from any z¢ € Int(S) cannot reach 9S.

Example 3 Consider the system
&= -2 2(0)= . (33)

Suppose that the wunsafe region of system (33) is

={z e R:2 < 0} Take S = {x € R :
x > 0}. For any xy € S, the solution of (38) is
z(t,xo0) = wo/\/1+ 2xt, which implies 1/|z(t,zo)| <
2vi+V2/ o = xa (t )+X2(1/|$0|)~ With (9), W(t, x) =
V=2t +1/2%. Take afs) = exp(s?/4). By (12),
W (z) = inf;>0 (W (t, ) exp(t) = exp(1/422). Hence,
according to (15), U(z) = 1/W(z) = exp(—1/4z?).
Clearly, such a function U (x) satisfies the ZBF condition
(4) forallx € S.



Then we show the construction of a converse ZBF
when the state trajectory xz(t,z() starting from any
xo € Int(S) reaches OS within finite time.

Example 4 Consider system (21) again. By (30), we
have U(z) = (%)%x Clearly, U(x) also satisfies (2) and
(4) forallz € S.

3.2  Ezponential Barrier Functions

To prove the existence of an EBF, we introduce the fol-
lowing lemma to connect ZBFs with EBFs. This lemma
is motivated by [31, Proposition 13] and [32, Theorem
2.8).

Lemma 6 Ifh:D — R is a ZBF satisfying (2) and (4)
for some locally Lipschitz EK -function asz, then there
exists a continuously differentiable EK -functionp : R —
R such that h(z) = p(h(x)) is an EBF.

Proof. Because ag is locally Lipschitz and strictly in-
creasing, we can find a continuously differentiable func-
tion a € EK such that |a(s)| > |as(s)| for all s > 0. Let

exp (fls O’}Eir’)) s> 0;
p(s) =40, 5=0;
—exp (J°, 285, s <0,

Now, we are ready to show that i) p is an EK-function;
ii) p is continuously differentiable on R; and iii) p(h(z))
is an EBF as desired.

Step 1: Proving p € EK. Clearly, p(s) is strictly increas-

ing on R and continuous on R\{0}. The rest is to show

that p(s) is continuous at s = 0. Because « is contin-

uously differentiable and strictly increasing on R, there

exists a constant K > 0 such that |a(s)| < K]|s| for all
€ [-1,1]. Thus,

p(s) < exp (/ %) = 5%, Vse€ [0,1], (34a)
1

D!
p(s)Z—exp(/ K—:)z—s , Vse
—1

Hence, p(r) is continuous at r = 0, and thus, is an EK-
function.

=

[~1,0). (34b)

Step 2: Proving the differentiability of p. Because « is
strictly increasing and continuously differentiable on R,
there is a constant K > 0 such that

0 <a(s) = lim M

6—0

<K, Vse[-1,1].

Again with the differentiability of a, we get that p is C2
on R\{0} and satisfies

Ap(s) p(s) = /\12753 ()\ _ O/(S)), Vs # 0.

pis) = a(s)’ o

Take A > K, and then,

" Ap(s)
p (S) Z 012(8)

(A - K) >0, Vse[-1,0)U(0,1],

which implies that p’(s) is strictly increasing on [—1,0)U
(0, 1]. On the other hand, from (34),

lim
s—0t S s—0— S

which implies p’(0) = 0. In the following, we show

lim p'(s) = lim p'(s) = p’(0) =0

s—0t s—0~
by contradiction. Because p(s) is strictly increasing,
p'(s) is positive on R\{0}, and therefore, there exists
¢ > 0 such that p'(s) > ¢ for all s € R\{0}. Thus, for
any s € (0,1],

1 . )\P(S) , . pl(S) , c()\ — K)
710 = G () = G () 2 S
Hence,

Jim p'(s) = (1) = lim s P (r)dr
<oy QAE)  [rar

K s—=0t Jg T
= —

which contradicts the assumption lim,_q+ p'(s) > 0,
and thus, lim,_.g+ p'(s) = p/(0) = 0. Similarly, we can
show lim,_,q- p'(s) = p’(0) = 0. Thus, p is continuously
differentiable on R.

Step 3: Proving that p(h(x)) is an EBF. Let h(x)
p(h(z)). Because p is an FK-function, we have h(z) =
for all x € 9S8, hi(z) > 0 for all x € Int( ), and h(z) <
for all x € D\S . Moreover,

0
0

Lyh(x) = 2”((:)) Lyh(z) > -2 (Z)(Z;”(h) > i)
for all z € D. Hence, h(x) is an EBF. O

Recalling Theorem 1, we can construct a converse ZBF
satisfying (2) and (4) with a locally Lipschitz decaying
rate ag, if system (1) is strongly safe on S. By combin-
ing this with Lemma 4 (ii) and Lemma 6, we have the
following converse EBF result.



Theorem 3 Suppose that system (1) is forward com-
plete, and there is a closed set S such that S X, = 0.
Then it is strongly safe on S if and only if there is an
EBF satisfying (2) and (5).

Because an EBF is a special ZBF with a globally Lips-
chitz decaying rate as(s) = As, it follows from Example
2 that the strong safety condition in Theorem 3 for the
existence of an EBF cannot be relaxed. Also note that
the set of EBF's is convex, which is beneficial for the bar-
rier function computation. This can be verified by taking
any two EBF's hy(z) and he(z) satisfying (2) and (5). It
can then be shown that h(x) = 0hy(z) + (1 — 0)ha(z) is
also a valid EBF for each 6 € [0, 1]. Thus, we have the
following corollary.

Corollary 1 Under the conditions in Theorem 3, sys-
tem (1) is strongly safe on S if and only if there is a
convez set of barrier functions satisfying (2) and (5).

4 Conclusion

This paper has explored the connections among ZBFs,
EBFs, and safety by solving the converse barrier function
problems. Two cases of safe systems have been studied:
in the first category, the state trajectory starting from
the interior of the safe set cannot reach the boundary; in
the second category, the state trajectory may approach
the boundary of the safe set within finite time, yet the
safe set is asymptotically stable. We have proved that
both categories of systems have a ZBF. Furthermore, by
establishing the connection between ZBFs and EBF's, we
have also shown that the first category of systems has
an EBF.
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A  Proof of Lemma 1

The implication (3) = (2) is clear. Now, we verify
the converse with a proof similar to that of [29, Lem-
ma 4.3]. Let &; be a function such that é&;(0) = 0,
ap(r) = Inf)) ) gn sy >r h(z) for all » > 0, and
&1 (1) = sup|y| o >_, M(x) for all 7 < 0. Let G2 be a func-
tion such that a2(0) = 0, d2(r) = Sup|y|, 4n. 5 <r P(2)
for all r > 0, and da(r) = inf_, <54 h(z) for all » < 0.
Then, we have 6&1(|.’£|01(Rn\5)) S h(x) S d2(|$|C1(Rn\S))
for all z € Int(S), and dq(—|z|s) < h(z) < &1(—|z|s)
for all z € D\S. By (2) and the continuity of h(z), both
&1 (r) and Gio(r) vanish at r = 0, and are continuous and
non-decreasing for all r € R. Hence, (3) follows by tak-
ing EK-functions ay and g such that |aq ()] < |y (r)]
and |éa(r)| < |aa(r)].

B Proof of Lemma 4

Because an EBF is a special ZBF with a globally Lips-
chitz rate as(s) = As, the second conclusion follows if we
can verify the first conclusion. With Lemma 2, we obtain
that the safe set S is forward invariant if system (1) has a
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ZBF satisfying (2) and (4) with a locally Lipschitz decay-
ing rate. Now, we show that the state trajectory x (¢, xo)
starting from any xo € Int(S) at ¢ = 0 cannot reach
the boundary 0S. Assume that this is not true. Then
there exist an initial state xo € Int(S) and a finite ¢ > 0
such that xz(t,z9) € dS. Take T* = inf{0 < t < +o00 :
x(t,x0) € S} and ¢1 = sup{0 < t < T* : h(x(t,z0)) =
1}. Since h(x(t,x0)) is continuous on ¢, h(z(t,x¢)) > 0
for all 0 < ¢ < T* and h(x(t,z9)) < 1 for all t > t;.
Because aj is locally Lipschitz and strictly increasing,
there is a constant K > 0 such that as(s) < Ks for all
0 < s < 1. Recalling (4), we have Lyh(xz) > —Kh(z(t))
for all z satisfying 0 < h(z) < 1. Hence, h(x(t,z¢)) >
h(z(ty, z0)) e  K—t) = e=K(=t) > 0 for all t > t;.
This, together with (3b), implies |x(t, 20)|a@m\s) > 0
for all ¢ > t;, contradicting T < +o0.

C Proof of Lemma 5

We first show the necessity. Let (¢, s) be a function such
that v(¢,0) = 0 and

v(t,s) = SHP{ 17 <t |wolare\s) > 1/5}

|.’17(T, $0)|C1(Rn\s)

for all s > 0. Clearly, (¢, s) is positive. For any fixed
t > 0 and any sg > s1 > 0,

’y(t782) = max {’Y(t,sl),
1
supy —————— 7 < t,1/s0 < |z n <15}}
p{‘m(77x0)‘cl(R"\$) /52 < |zolamn\s) /51
S ’Y(t781)

which implies that s — (¢, s) is non-decreasing. Simi-
larly, it is not difficult to show that ¢ — ~(¢,s) is also
non-decreasing. Let x(s) = (s, s). Because x is non-
decreasing, there exist a function y € K., and a con-
stant ¢o > 0 such that x(s) < x(s) + ¢o. Thus,

1 1
lz(t, 70)]c1(rm\5)

<(,
|Zo]c1rm\8)

1
<xi(t) +x

—)+c¢
2 |~’Co|c1(Rn\3) )

where x; = x and ¢ = 2¢g.

Next, we show the sufficiency. For any z¢o € Int(S),
Xg(m) < 400. Thus, the term on the right-hand
side of (8) cannot escape to +oco in finite time. Hence,
|z(t, 0)|cirm\s) > 0 for all £ > 0, which implies the
strong safety of system (1).



