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A Holistic Indirect Contact Identification Method for Soft
Robot Proprioception
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Abstract

Soft robots hold great promise but are notoriously difficult to control due to their compliance and back-
drivability. In order to implement useful controllers, improved methods of perceiving robot pose (position and
orientation of the entire robot body) in free and perturbed states are needed. In this work, we present a holistic
approach to robot pose perception in free bending and with external contact, using multiple soft strain sensors
on the robot (not collocated with the point of contact). By comparing the deviation of these sensors from their
value in an unperturbed pose, we are able to perceive the mode and magnitude of deformation and thereby
estimate the resulting perturbed pose of the soft actuator. We develop a sample 2 degree-of-freedom soft fin-
ger with two sensors, and we characterize sensor response to front, lateral, and twist deformation to perceive
the mode and magnitude of external perturbation. We develop a data-driven model of free-bending deforma-
tion, we impose our perturbation perception method, and we demonstrate the ability to perceive perturbed
pose on a single-finger and a two-finger gripper. Our holistic contact identification method provides a general-
izable approach to perturbed pose perception needed for the control of soft robots.

Keywords: multidirectional PneuNet actuator, actuator with embedded sensing, pose estimation, indirect
contact sensing

Introduction

T he emerging field of soft robots challenges the traditional
perception of robots as rigid, inflexible machines. Unlike

conventional robots made with hard materials, soft robots are
typically constructed from materials with relatively low elas-
tic modulus, such as elastomers,1 hydrogels,2 flexible poly-
mers,3 and fabrics.4 The choice of materials grants them
better flexibility and adaptability, extending the capabilities
of robots into entirely new domains.5,6 In contrast to rigid-
link robots, actuating at discrete joints, soft robots possess
inherent deformability allowing them to traverse different

terrains during exploration tasks,7 and adapt to diverse body
morphologies in rehabilitation applications.8,9 Moreover, the
compliance of soft robots allows them to deflect in response
to external force and moment (Fig. 1) for safer interactions
with their surroundings compared with rigid robots. Their
materials naturally absorb shock from contact, minimizing
potential damage to themselves and their surroundings.
Consequently, soft robots are well suited for interacting with
humans, handling fragile objects, and operating in sensitive
and unstructured environments.10

Despite holding great promise, soft robots have yet to see
wide commercial acceptance, due in large part to challenges

1Department of Mechanical Engineering, University of Wisconsin, Madison, Madison, Wisconsin, USA.
2Applied Materials, Santa Clara, California, USA.
3Wehner Engineering, Madison, Wisconsin, USA.

1

SOFT ROBOTICS
Volume 00, Number 00, 2025
ª Mary Ann Liebert, Inc.
DOI: 10.1089/soro.2024.0141

Open camera or QR reader and
scan code to access this article

and other resources online.

D
ow

nl
oa

de
d 

by
 2

60
7:

f3
88

:1
08

2:
ff

f4
:4

96
7:

ed
42

:4
c4

3:
9b

9d
 f

ro
m

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

2/
25

/2
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

http://dx.doi.org/10.1089/soro.2024.0141


in control.11 Effective robot control requires perception of
the robot’s position and configuration, similar to our brains’
use of sensory input for proprioception to make decisions.12

For effective control, robots must be able to perceive their
pose (overall position and orientation of all robot parts rela-
tive to one another and in space). For a conventional robot
consisting of rigid links actuating at discrete degrees of free-
dom (DOF), pose estimation is well understood and is gener-
ally calculated with information from one sensor at each
rotational or translational joint. However, soft robots, with
their continuum mechanics and theoretically infinite DOF,13

do not lend themselves to rigid body models. Additionally,
traditional robots can often neglect complex dynamics and
mechanics, such as resonance and link deformation, because
deviation from the rigid body model is negligible. In con-
trast, by their very design, soft robots are both flexible and
back-drivable. While an actuator’s geometry may be predict-
able in free bending (continuum actuation with no external
forces), its shape changes greatly in response to external
loads (unanticipated contact, payload mass, or even deflec-
tion due to gravity). Therefore, accurate proprioception of a
soft robot requires drastically more system information to

determine pose, especially under load from various external
forces and moments. To address this, the field of soft
robotics requires modeling and sensing a broad range of
external contacts.

Modeling

There have been numerous methods used to estimate the
pose of soft robots.14 Analytical modeling involves studying
the kinematic and dynamic equations of soft robots, typically
based on simplifying assumptions.15 Common analytical
models include pseudo rigid body approximation,16,17 Cos-
serat rods approximation,18 or piecewise constant curvature
approximation.19 While useful in some cases, these models do
not guarantee close correlation with real applications, as they
generally consider only free-bending scenarios.20,21 While
some models account for external loading and contact, they
require precise knowledge of contact location and direction,
limiting their effectiveness in unstructured environments.22,23

An alternative solution that better captures the nonlinear
elasticity of material and contact interaction is finite element
analysis (FEA).24–26 FEA divides the geometry of soft robots
into meshes to make estimations, but its accuracy is highly
sensitive to material and structural parameters. While some
real-time FEA control has been achieved using model order
reduction,27–29 there remains a trade-off between computa-
tional complexity and accuracy.30 A more detailed model
requires far more computational resources.

Data-driven methods, utilizing external or embedded sen-
sors, fit models or train neural networks using sensory
data.31,32 These methods encompass statistical techniques
such as linear regression,33 support vector regression,34 and
Gaussian process regression.35 For more complex data,
machine learning methods like multilayer perception34 and
recurrent neural network can be employed.36 While these
approaches can model complex behaviors, they are highly
sensitive to data and may struggle with long-term dynamic
changes. Additionally, data-driven models often provide less
intuitive insights into the underlying physics of soft robots.

These modeling techniques have provided promising
results in ideal conditions (free bending and scenarios with
very specific/well-defined contacts). However, robust meth-
ods of controlling soft robots in general conditions remain
elusive. Such control, covering a broad spectrum of soft
robots in the real world, will not be possible without a robust
perception of robot pose.15,37,38 This requires accurate real-
time proprioception of deformation from the myriad likely
external forces. We present a novel, holistic sensing
approach to proprioception, fundamentally designed around
the deformability of soft robots. This method fills a critical
gap in the field, allowing soft robots to perceive and respond
to a broad range of external forces by comparing responses
of internal sensors not collocated with the points of contact.

Sensing

In most traditional rigid robot kinematic models, a sensor
is typically dedicated to measuring a specific variable. For
example, a rotational encoder is placed at a rotation degree
of freedom to sense joint angle, and a pressure sensor is
placed at the anticipated location of contact to sense contact
pressure. If one more phenomenon is to be perceived, one

FIG. 1. Sensor-embedded multidirectional pneumatic net-
work actuator (SEMPA). (A) Two pressure inputs (P1, P2)
inflate parallel chambers along the length of the finger. Two
resistive sensors (R1, R2) perceive deformation (resistance
plots, lower left). A two-finger gripper is shown holding a
cup (lower right). Each SEMPA finger is 115mm in length.
(B) Illustration of three modes of contact and the corre-
sponding sensors’ responses. By comparing the two sensor
responses, we can identify the perturbation mode. (C)
Exploded view of the SEMPA and its internal structure, with
the mechanics of the embedded soft sensors (upper right).
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more sensor is added to the robot. A similar strategy has
been employed in soft robots.39,40 Embedded sensors, inte-
grated directly into soft actuators, measure electrical signals
like resistance,39,41 capacitance,42,43 or optical signal,44,45 to
estimate strain, stress, or contact. These sensors are usually
calibrated to extract information on a single phenomenon.
As the number of phenomena of interest grows, this presents
a great challenge in real-time signal processing and fabrica-
tion, as the number of required sensors is equal to or greater
than the number of phenomena of interest. It is also not clear
what configuration or density of sensors would be needed to
sense a contact that is continuously varying in size and loca-
tion (common in continuously deformable soft robots).
E-skins offer a potential solution by stacking multiple sen-
sors sensitive to different stimuli.46–49 These skins require
direct contact and an extensive sensor array to cover large
areas, making them impractical for mass production and
real-time computation. Additionally, reliance on a single sig-
nal can lead to nonunique mappings, where many behaviors
result in the same response. All of these sensors focus on iso-
lating individual phenomena, often requiring sensors to be
shielded from the “noise” caused by deformations/motions
from other parts of the soft robot.40 External sensors, such as
vision systems, have also been used in soft robots but are
prone to ambient occlusion and high computational costs.37

Indirect sensing/proprioceptive sensing

Proprioceptive perception in soft robotics extends beyond
sensor development, focusing on interpreting sensor data
into meaningful pose information such as position and con-
tact detection. Several studies have integrated sensors to
estimate the state of actuators.50,51 In our previous work,52–55

we presented a planar actuator capable of detecting frontal
contact by tracking resistance in a dorsally mounted bend
sensor versus a single input pressure. Upon contact with an
external object, the actuator would deflect from its free-
bending state, causing the resistance of the bending-
sensitive sensor to deviate from its expected value. When
this deviation exceeded the threshold, contact was declared.
Other notable examples of indirect sensing include strain
sensors in parallel with soft actuators using a bioinspired
approach to sense contact,56 wave guides to sense bending
and contact of an actuator,57 a microfiber-based sensor
integrated within an actuator enabling feedback control,58

and an acoustic sensor used to recognize the change in
sound corresponding to the change in bending curvature of
the actuator, thereby identifying contact and mapping it to
a specific location.59,60

Additionally, machine learning has enhanced proprio-
ceptive perception in sensor-embedded soft actuator. Loo
et al.61 used machine learning to map pressure and embed-
ded curvature sensor data to bending angles and contact
forces in a robot. She et al.62 trained a neural net with
embedded camera images to estimate the two-dimensional
(2D) position and classify the object in contact. Similar
strategies have been demonstrated using other embedded
sensors,63,64 leveraging indirect sensing approaches to
avoid the need for numerous sensors or direct sensor con-
tact. While these works are promising, they primarily focus
on detecting the presence or absence of contact without
identifying deformation type or magnitude. In real unstructured

environments, however, external contact can occur unpre-
dictably in terms of locations, directions, or form, signifi-
cantly affecting soft robot pose. To fully harness the
proprioception of soft robot for real-world tasks, a com-
prehensive understanding of external contacts and their
impact on robot deformation is essential. We present an
approach in which we compare the responses of several
sensors to holistically determine the pose of the robot sys-
tem under contact.

Holistic sensing, our approach

In our previous work,65 we found that the state of one part
of the Octobot system affected performance throughout the
device. In our initial exploration of sensorized elastomeric
fingers,40 we found that deformation (deliberate actuation or
external perturbation) in one part of the system caused sen-
sor responses throughout the robot, interfering with the abil-
ity to independently sense phenomena of interest. By their
very nature, soft robots deform, causing interaction between
subsystems. The fundamental inspiration behind the work
presented here is to use this noise or “cross-talk” between
sensors and actuators, not as noise to be overcome, but as a
valuable source of system information. We believe that,
when properly designed, more information can be obtained
from sensor responses holistically than from the sum of the
individual sensors.

To achieve this, we introduce a holistic indirect contact
identification (HICI) method. By comparing the responses
of several sensors, HICI allows us to perceive contact and
identify phenomena that could not be perceived by any
individual sensor. Due to their inherent deformability, the
subsystems in soft robots are notoriously interconnected,
with actions in one part of the system causing sensor
responses and changes in actuator behavior throughout the
robot.40,65 We take inspiration from embodied intelligence
(using external interaction information to simplify con-
trol),66,67 and from proprioception in nature to use these
distributed signals, not as a source of noise to be mini-
mized, but as a source of valuable state information. Fur-
ther, by embracing this indirect contact method, we
perceive all these contact events without requiring coloca-
tion between the sensor and the area of contact. This is key
in soft robotics, as contact can be spread across an unknown
and often varying region of the robot, making direct contact
perception infeasible. This holistic contact method allows us
to differentiate between a variety of unknown external loads
and to estimate the resulting deformation and pose in a static
or quasistatic state. This method does not consider high-
speed operation, in which system dynamics, transient sensor
response, or lag in perception may become an appreciable
part of the signal. However, high-speed operation is generally
not the primary operating domain of soft robot grippers.
Because our scheme does not change the existing model of a
soft robot, it can be combined with any model that character-
izes robot pose in free bending, thereby achieving real-time
proprioception in both free bending and contact conditions.
We believe HICI has the potential to bring true propriocep-
tion to soft robots, enabling them to perform practical tasks
and evolve into real-world devices with capabilities on par
with traditional robots.
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Sensor-embedded multidirectional pneumatic
network actuator

To demonstrate our method, we introduce a sensor-embedded
multidirectional pneumatic network actuator (SEMPA), as
shown in Figure 1A–C. The SEMPA includes two parallel
lines of inflatable chambers along its length and two embed-
ded fluidic sensors on its dorsal side. By comparing the
responses from the two embedded sensors, R1 and R2, we
can use HICI to distinguish multiple contact modes: front
contact, lateral contact, and twist contact (Fig. 1B) encoun-
tered by the SEMPA.

Key contributions of this work

Soft robots deform under external loading, often in com-
plex modes, making it difficult for the community to model,
predict, and even measure their pose. Similarly, sensors in
soft robots (each intended to perceive one phenomenon of
interest), tend to respond to unrelated deformations from
entirely different parts of the system. Our method embraces
this complex motion and inherent cross-talk, eschewing the
traditional one-sensor-per-phenomenon method in favor of a
holistic pose perception approach. This novel method will
greatly affect the soft robotics field, bringing key contribu-
tions of:

- Contact detection in 3D, without a contact sensor, via
deviation from anticipated sensor values. We present a
method (HICI) to determine external contact by com-
paring the states of multiple soft sensors mounted
throughout the soft actuator. Several studies described
above use individual sensors to sense individual soft
robotic phenomena. In our comparison-based method,
we utilize the compliance characteristic in soft robots to
holistically sense deformation by deviations of signals
throughout the system from their anticipated values.
We demonstrate the ability to perceive intentional con-
tact (gripping an object) and unintentional contact (per-
turbation in several directions as well as changing load
of a carried object). This deviation-based method has
the additional advantage of not requiring a dedicated
“contact” sensor or a sensor collocated with the antici-
pated point of contact.

- Pose estimation by comparing multiple sensors. Building
on our HICI approach, we enhance the capability of a
data-driven model, extending its application from char-
acterizing free bending to capturing actuator behavior
under external contact. By tracking deviations of both
sensors from their anticipated values, the model can
detect external contact and determine the resulting
pose of the actuator under such conditions. We deter-
mine the direction from which a contact occurred and
the magnitude of resulting displacement in 3D space.
We demonstrate a finger’s ability to sense the magni-
tude of bend, twist, and lateral deformation, updating
its pose in response to these interactions.

- An approach applicable to most forms of soft robots.
While we primarily demonstrate our approach on the
one-finger motif, the approach can be applied to most
underactuated systems in which multiple deflection
sensors can be applied. This approach is particularly
useful for elastomeric pneumatic soft robots, which we

demonstrate with data on actuators with several other
sensor schemes, preliminary results on other actuators
(explored in our previous works), and a two-finger
gripper motif, serving as a baseline for extending the
approach to a wide range of soft grippers.

In this article, we first use the HICI method to characterize
the response of an SEMPA to various modes of perturbation.
We then develop a data-driven model for SEMPA in free
bending and incorporate it with HICI results to estimate the
SEMPA’s pose under unknown external loading. Finally, we
present a case study in which a 2-finger gripper perceives
and responds to external forces, showcasing the generaliz-
ability of the HICI method.

The article is organized as follows: Following this Intro-
duction section, we present Results section, including design
and characterization of the device, the HICI method, and
integration with a data-driven model. Next, we present
Materials and Methods section describing the details of
our manufacturing process and experiment methodology.
We conclude with a Discussion and Conclusion section of
the significance of our method, its impact on the field, and
the next steps.

Results

Design and detecting perturbation mode in free bending

The widely used Pneumatic Network (PneuNet) actuator
design consists of an elastomeric finger-like body contain-
ing an internal air bladder consisting of a series of hollow
chambers along its length. Typically, one surface of the
actuator is reinforced with fabric or an elastomer of higher
modulus. When pressurized, the air chambers bulge and
exert force against each other, causing the actuator to bend
toward the less stretchable side.68–70 Traditional PneuNets
bend in a single (planar) direction, but other forms have
been developed such as bidirectional,71,72 multidirec-
tional,73,74 and omnidirectional75–77 actuators. Our SEMPA
is a multidirectional PneuNet actuator, incorporating two
parallel air chambers along its length (Fig. 2A), inflated
with two separate air supplies, P1 and P2 (Fig. 1A). Based
on the input pressure P1 and P2, the SEMPA can bend both
in-plane and out-of-plane. Primarily intended for gripping,
out-of-plane deformation of the SEMPA was designed to
(1) provide sufficient out-of-plane motion to adapt grip if
planar actuation yields suboptimum contact and (2) provide
out-of-plane force to counteract perturbations (see Supple-
mentary videos SV1, video SV2). The goal was not to maxi-
mize out-of-plane deformation. By inflating both chambers
(P1 = P2), the finger will actuate in the xz plane (Fig. 2B).
Biasing inflation in favor of one chamber (P1 6¼ P2) will
increase actuation on that side, and the finger will actuate
out of the xz plane. At the extreme (either P1 or P2 = 0), the
finger will deflect approximately –20� out of plane
(Fig. 2B), sufficient to adapt grip or to counteract external
perturbations (see Supplementary Video S2).

Two soft fluidic resistive sensors are adhered to the dor-
sal surface of the SEMPA symmetrically near its left and
right edges. The sensors filled with the electrolyte solution
1-ethyl-3-methylimidazolium ethyl sulfate (Sigma Aldrich,
Burlington, MA, USA)40 are highly stretchable. As the
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length and cross-section area of the sensors’ internal chan-
nel change with the movement of the actuator, such as
bending or twisting, the sensors’ resistance will vary
accordingly, following the resistance equation R = q * (L/A),
where q is the resistivity, L is the length, and A is the
cross-sectional area of the internal channel of the sensor.
We have used this approach to sensing deformation in the
past to perceive bending, contact, and inflation pressure,40

and our preliminary work.55 Sensor resistance varies with
time, which is believed to be due to the migration of ambi-
ent moisture through the elastomer and into the sensor
channels. All of our experiments were conducted on sen-
sors more than 14 days old, at which point resistance has
been shown to reach a steady state. Details on the time-
resistance relationship are in our previous work.40 An
overview of the finger’s mechanical design is shown in
Figure 1C, and fabrication is described in the Materials
and Methods section. An explanation of the underlying
asymmetrical actuation concept and the electronic circuit
(including specifics of the relaxation oscillator) is covered
in detail in our previous work.55 When the SEMPA actuates
in-plane, the dorsal surface becomes longer, stretching both
sensors equally, yielding similar increases in sensor resist-
ance. When the SEMPA actuates out-of-plane (one side
actuates more than the other), the sensors deform by unequal
amounts, resulting in unequal changes in resistance. Maxi-
mizing the distance between the sensors (while still on the
dorsal surface) maximizes the difference in sensor response
to out-of-plane actuation, increasing sensitivity. When input
pressure follows P1 > P2, change in output resistance DR1 >
DR2; when P1 < P2, DR1 < DR2; and when P1 = P2, DR1 �
DR2 (Fig. 2A). Tracking these sensor resistances allows us to
track SEMPA actuation during unperturbed free-bending. In
a future section of this work, we generate a free-bending
model, mapping sensor responses (R1, R2) for the range of
unperturbed poses (actuator orientations and pressure states).
Critical for this work, the sensors also experience resistance
change when the SEMPA is deflected due to an external
force. By comparing the deviation of both sensors from their
value in an unperturbed pose, we are able to perceive the
mode and magnitude of deformation and thereby estimate the
resulting perturbed pose of the SEMPA.

Experimental setup

We controlled the SEMPA with the system shown in Fig-
ure 3. All pneumatic solenoid valves were connected to a single
pressure regulator, controlled by an Arduino microcontroller
through four corresponding Negative Positive Negative (NPN)
transistors, powered by an external power supply. The resistan-
ces of the soft sensors were measured utilizing a relaxation
oscillator, which produced signals with varying frequencies
depending on the sensor’s resistance. By utilizing the known
input frequency (f), circuit capacitance (C), and the overall
resistance (Ro) used in the relaxation oscillator, the sensor
resistance (R) was calculated using the following equation.55

R ¼ 1

2· f ·C · ln 1þRo
1�R0

� � (1)

With this experimental setup, we controlled input pres-
sures (P1, P2) and recorded changes in output resistances
(DR1, DR2). Note that all sensor values were collected dur-
ing the flexion portion of the actuation cycle (slow increas-
ing pressure). The flexion phase of the soft actuator is
prioritized, as it performs the primary functional tasks of a
soft gripper (establishing and then maintaining a grasp of

FIG. 2. Free bending and sensor
response of an SEMPA actuator.
(A) Bending behaviors (in-plane and
out-of-plane bending) of SEMPA
under different inflation conditions,
Top: photos of actuator bending.
Bottom: plot of sensor responses
(DR1, DR2Þ to varying input pres-
sure states (P1, P2). (B) Illustration
of motion space of conventional
unidirectional PneuNet actuators
(constrained to xz plane) and
SEMPA (out-of-plane actuation to
–20�).

FIG. 3. Schematic of the overall two-finger system with
four solenoid valves and relaxation oscillators. A single
SEMPA finger uses a similar configuration, with only two
solenoid valves and relaxation oscillators.
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external objects), while the relaxation phase mainly resets
the system for subsequent cycles.

Detecting mode of contact

In our previous work, we demonstrated the ability of a pla-
nar PneuNet actuator with a single dorsal curvature sensor to
detect front contact. When the sensor’s signal deviated from a
reference value beyond a predetermined threshold, the actua-
tor had contacted an external object (assumed to be near the
front and tip of the finger, as this was perceived during a tap-
ping motion). This proof of concept served as a foundation
toward the work presented here. In this work, we characterize
deformation from various modes of contact using our HICI
method, and we estimate soft robot pose in free bending and
under perturbation. In this method, we focus not on the signal

from one sensor but on comparing the signals between multi-
ple sensors. As more sensors are designed into a soft robot
system (particularly a multi-DOF robot), more detailed pose
and contact information can be obtained, resulting in a better
understanding of the type of contact, the direction of force,
and the resulting perturbed pose of the robot.

By characterizing the patterns of the two SEMPA sensors,
we can distinguish three distinct types of contacts: front con-
tact, lateral contact, and twist contact.

1. Front contact: An external force along the negative
x-axis is applied on the front surface of the SEMPA
(one pressure state in Fig. 4A, B; other states in
Supplementary Figs. S1, Figs. S2).

2. Lateral contact: An external force along the positive/
negative y-axis is applied at the side of the tip of the

FIG. 4. Characterizing SEMPA response to various perturbation modes (selected pressure states shown here. All other
pressure states detailed in Supplementary Figs. S1, S2, S3, and S4). From left to right: Computer Aided Design (CAD)
plot of contact. Sensors’ responses during contact (DR vs. time). Screenshot from the demonstration video (see
Supplementary Videos SV3, SV4, and SV5). Sensors’ responses (DR vs. displacement). (A) Front contact (obstacle at
tip), z¼ � 90mm, vary obstacle position along the x-axis. (B) Front contact, x¼ 0mm, vary obstacle position along
z-axis. (C) Lateral contact (obstacle at the tip), translate along y-axis. (D) Twist contact, rotate tip about z-axis.
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SEMPA (one pressure state in Fig. 4C; other states in
Supplementary Fig. S3).

3. Twist contact: An external torsion along the positive/
negative rotation axis (z-axis if SEMPA is uninflated)
is applied at the tip of the SEMPA (one pressure state
in Fig. 4D; other states in Supplementary Fig. S4).

Front contact is the common result of planned interactions
such as gripping an object. In contrast, lateral and twist con-
tacts are likely to occur due to gripping uneven or irregularly
shaped surfaces (asymmetrically gripping an object at an
angle). Lateral or twist contact may also occur due to
unplanned interaction, such as bumping or an object slipping
(or about to slip) from the grip. Thus, it is very desirable to
accurately determine the location of the front contact and the
size of the object (Fig. 4A, B). It is useful to understand the
magnitude of lateral and twist contact (Fig. 4C, D), though
the precise location of these contacts may be less crucial.

Front contact. When front contact occurs, both sensors’
resistances decrease compared to the initial value (DR1,
DR2 < 0) due to the reduced actuator curvature (Fig. 4A,
B). Knowing the pressure inputs (P1, P2 to SEMPA) and
the anticipated outputs (DR1, DR2), we can estimate the
magnitude of the deformation due to front contact. If con-
tact occurs with a known x position, we can estimate the
contact location along the z-axis of the finger. Conversely,
if contact occurs at a known z position, such as the finger-
tip, we can estimate the influence of contact on the tip posi-
tion along the x-axis of the finger.

Constant z, varying x: With the SEMPA inflated to
P1 = P2 = 30 kPa, we imposed a front perturbation (x =
30 to 0 to 30 mm) at a distance z = 110 mm from the base
(near the tip) as shown in Figure 4A. We curve-fit the
resulting resistance–displacement data to find a second-
order linear equation estimating tip frontal displacement with
changing x from the changes in R1 and R2 (Fig. 4A, right).

Constant x, varying z: Next, with the SEMPA inflated to
P1 = P2 = 30 kPa, we introduced an obstacle at x = 0, z =
25 mm (near the base of the sensors, where the SEMPA could
no longer perceive small perturbation). We moved the obsta-
cle in the z-direction –90 mm (to the tip of the SEMPA), then
back to its original position. We curve-fit the resulting resist-
ance–displacement data to find a second-order linear equation
estimating tip frontal displacement with changing z from the
changes in R1 and R2 (Fig. 4B, right).

Lateral contact. When a lateral contact occurs, one sen-
sor’s resistance decreases while the other’s increases
(Fig. 4C). This behavior can be related to classical mechan-
ics, where strain in a beam (e) in bending is known to vary
linearly with distance from the neutral surface (y) and dis-
tance to neutral surface from the center of curvature (q) in
Eq. 2.

e¼ � y
q

(2)

Although SEMPA has complex geometry and nonlinear
material properties, we can gain a qualitative understanding
of sensors’ deformations from the equation governing linear

displacement in a rectangular beam in the linear elastic
region. We imposed a lateral perturbation (y = 0 to –30 to 0
to 30 to 0 mm). Based on the sign of the resistance changes,
we determine the direction of the perturbation. If
R1 increases and R2 decreases, the perturbation is acting in
the –y direction (Fig. 4C, second plot) and vice versa. We
curve-fit the resulting resistance–displacement data to find a
second-order linear equation estimating tip lateral displace-
ment from the changes in R1 and R2 (Fig. 4C, right).

Twist contact. When a twist contact occurs, both sensors’
resistances increase (Fig. 4D). Comparing again to solid
mechanics, if the SEMPA were a regular rectangular beam
of length (L), undergoing twist of angle (v), and the sensors
were at a similar distance from the actuator’s central axis
(q), the sensors would experience equal shear strain (c) and
could be characterized by Eq. 3.

c¼ q · v
L

(3)

The nonuniform SEMPA can be qualitatively compared to
this, but geometric and material nonhomogeneity cause
quantitative deviation (Fig. 4D, right). We curve-fit the
resulting resistance–displacement data to find a second-order
linear equation estimating tip twist angle from the changes in
R1 and R2 (Fig. 4D, right).

To further validate the feasibility and performance of our
method, we characterized the HICI method with the SEMPA
throughout its range of pressure states (P1, P2) under various
poses. Through this characterization, we demonstrate the
HICI method to be effective across almost all actuation
states within the working pressure range (P1, P2 2 0–40
kPa). The only exceptions are that at maximum pressure
(P1 = P2 = 40 kPa), the SEMPA shows reduced ability to
detect twist contact and loses the ability to detect lateral con-
tact. Resistance versus time curves (equivalent to column
2 in Fig. 4) for the other pressure states are given in Supple-
mentary Figs. S1, S2, S3, and S4). To assess repeatability
and accuracy, we performed five trials for each contact sce-
nario, calculating the mean and variance of the results. The
findings showed high repeatability and accuracy, with a
maximum variance of 0.06 kX (Supplementary Fig. S7A).
This low variance indicates that the method reliably reprodu-
ces sensor readings under identical conditions, underscoring
its robustness and potential for consistent contact identifica-
tion in various real-world applications.

To demonstrate the adaptability of HICI, we tested the
method on the SEMPA actuator (design used throughout this
work), but with different sensor configurations (Supplemen-
tary Fig. S7B, C). The sensor configurations (varying sensor
channel cross-section or modifying sensor effective length)
yielded different responses during actuation, which could be
used for future design refinement to increase sensitivity to
desired stimuli or over portions of the actuation cycle. While
response magnitude varied, the same overall response modes
were seen in all experiments, suggesting that the HICI
method could be used with alternate sensor layouts and
imposes minimal requirements on specific sensor layouts.
Regarding the actuator configuration, while this study
focused on a specific multidimensional design, SEMPA,
similar finger-sensor configurations have been developed in
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several of our previous works. Our early 3D-printed finger
demonstrated the deviation of all sensor signals to external
perturbation,40 which served as inspiration for this work.
Several other actuator designs were used to develop the
threshold-based contact detection model described in the
introduction.55,78 All of these sensorized fingers demon-
strated the ability to perceive contact in the same manner.
These numerous designs composed of various geometry,
actuator configuration, and materials provide encouraging
data points that actuator structure and material composition
do not prevent the method’s successful application. Since all
types of contact that have been tested occur passively in
response to external stimuli, actuator design is unlikely to
influence the detection process. This independence from spe-
cific structural or material configurations suggests that our
method can be broadly applied across different actuator
designs. We believe that as long as the actuator is suffi-
ciently soft and self-drivable, our method is expected to per-
form effectively, requiring only a new characterization
process.

In summary, with two sensors on the dorsal sides of
SEMPA, there are four possible patterns of sensor readings,
which can be learned to distinguish three types of contact:

1. R1 increase, R2 decrease (lateral contact in the positive
direction).

2. R2 increase, R1 decrease (lateral contact in the negative
direction).

3. Both increase (twist contact).
4. Both decrease (front contact).

Compound contact. The three types of contacts discussed
above are based on the assumption that the SEMPA was ini-
tially in a free-bending state. However, even if the SEMPA
is already in contact with an object, it can detect new con-
tacts if it reaches a new steady state (where the sensors’
readings have stabilized). By tracking the change in resist-
ance from any given steady state, any deviation beyond a

predetermined threshold indicates a change in state, which
can be perceived as another contact. With that, the HICI
can perceive multiple contacts in a time sequence. We dis-
cuss this further in the case study section.

Free-bending model

To demonstrate the feasibility of HICI in soft robot pro-
prioception, we developed a data-driven model to estimate
the pose of SEMPA during free bending, determining its tip
position and orientation. This model calculates free-bending
pose, and we apply our HICI method to estimate the per-
turbed pose of the soft robot.

We also account for the influence of gravity by incorporat-
ing the base orientation of SEMPA into the model. The base
orientation of the finger (orientation of the rigid support
hardware on which the actuator is mounted, orange compo-
nents in Figure 1, not considering deflection of the SEMPA
due to gravity, actuation, or external perturbation) is repre-
sented by two angles, h(0–180� rotation about the global y-
axis) and a (0–360� rotation about the finger z-axis) (Fig. 5A
(i)). With 45� increments, we considered a total of 26 base
orientations (see Supplementary Data). The base orientation
h = 0� occurs when the SEMPA points downward (as shown
in Fig. 4). See further discussion in Supplementary Data S1
and Supplementary Fig. S5. The base orientation shown in
Figure 5A (i) is h = 90�, a = 0�. We collected all marker data
to develop the model using an Optitrack motion capture sys-
tem with 15 cameras. We installed six markers on the finger,
as shown in Figure 5A (ii), with markers M4, M5, and M6
representing the SEMPA tip. During data collection, we var-
ied the input pressures of each channel from 0 to 40 kPa to
induce different bending configurations, recording the sen-
sors’ resistances (R1, R2) (summary plot in Fig. 5B, details
in Supplementary Data) and the position of the markers
(x, y, z) (three configurations in Fig. 5C, the remainder in
Supplementary Data). Using MATLAB, we developed a
10th-order polynomial regression model. Given pressure

FIG. 5. Free bending model. (A) Nomenclature. (i) Variables and coordinate system. (ii) Marker configuration. (B)
Plot of sensors’ responses for all 26 considered base orientations, followed by the CDF plot of R1 and R2, showing the
accuracy of the derived resistance estimation equations. (C) Plot of marker M6 position (x,y, z) for 3 of 26 base orienta-
tions, showing the influence of gravity and CDF plot of x, y, and z, demonstrating the accuracy of the data-driven pose
estimation model.
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state and finger base orientation (P1, P2, h, a) as inputs,
the model outputs an estimate of the tip position (x, y, z)
and sensor resistances (R1, R2). Each output variable, such
as the x-coordinate, is represented by a separate 10th-order
polynomial equation. Data were collected 2x for each
configuration. The initial data set was used to generate
the model, and the second set was used to evaluate the
accuracy (cumulative distribution function [CDF] and
threshold).

Threshold. We would like to find a threshold value for
DR1 and DR2, above which deviation from reference resist-
ance indicates the presence of an external perturbing force.
We generated a CDF plot of the error between the model
and the real data for each variable. The CDF analysis of
position demonstrates that for all input pressures (P1, P2, 2
0–40 kPa) and base orientations (h, a), 95% of the time,
marker position was within 2 mm of the expected position in
all directions (x, y, and z) (Fig. 5C). Further, the CDF analy-
sis of sensor responses demonstrates that for the same inputs,
95% of the time, both sensor resistances are within 0.6 kX of
the values predicted by the model (Fig. 5B). We selected a
threshold value with a multiplier of 0.8 kX, 1.3 times this
95% value. Based on the application, a larger or smaller mul-
tiplier can be chosen to avoid false positives or negatives,
respectively. Thus, for the remainder of this work, we define
a deviation in both R1 and R2 from the predicted model
value of 0.8 kX as contact.

Pose estimation in free bending and multimode contact

The model developed in the previous section estimates the
pose of the SEMPA in free bending based on input pressures
and base orientation, and it gives us anticipated resistance
values R1 and R2. We have developed a resistance threshold
value of 0.8 kX, beyond which we identify the system as
having transitioned from free bending to a state of contact.
When contact is detected, we utilize our HICI method to
determine the mode and magnitude of external contact, and
we update the pose estimation accordingly. By analyzing the
difference between the real-time R1 and R2 and the corre-
sponding reference values, we can estimate the deviation or
rotating angle of the SEMPA tip using the corresponding
second-order equations. With the theoretical pose informa-
tion of SEMPA in free bending, we can refine this estimation
to include contact-based deformation by either adding a dis-
tance vector or multiplying by a rotation matrix to achieve
an updated pose estimation (Fig. 6A). We demonstrated this
methodology by developing a SEMPA pose tracking pro-
gram, as shown in Figure 6A. During the demonstration, the
sensors’ responses followed the patterns we identified ear-
lier, as illustrated in Figure 6B. See also Supplementary
Video S1.

Case study

To demonstrate the generalizability of HICI and its poten-
tial to boost the control of soft robots in real applications, we
developed a two-finger gripper incorporating two SEMPA
units (Fig. 7A). This gripper can perceive external contact dur-
ing free bending, distinguish between different perturbations,
and respond accordingly. As shown in the finite state machine

(Fig. 7B) and the sensor response curve (Fig. 7C), the gripper
initially inflates to close (State 1). If contact is detected
(change in all four sensors’ resistance exceeding the threshold,
Tof –0.8 kX, the gripper grips the cup (Pi = 35 kPa) (State 2)
and raises it. If no contact is detected, the gripper opens and
recloses, repeating this process until it senses a contact.

While holding the cup (State 2), the gripper is able to
detect and respond to external perturbations. We tested three
distinct perturbations induced by external forces. Each pertur-
bation results in a distinct change in the embedded sensors’
resistances, providing sufficient information to differentiate
them from each other (Fig. 7C).

i. Snatch the cup (F global x): An external force attempts
to remove the cup from the gripper along the global x-
axis. All four sensor responses decrease (DR1–4 < –T).
Controller transitions to State 3.

ii. Weight added to the cup (–F global z): An additional
115 g is added to the cup. All four sensor responses
increase (DR1–4 > T). Controller transitions to State 4.

FIG. 6. Estimating pose: free bending and contact
(front, lateral, and twist). (A) Flowchart for the real-time
proprioception of SEMPA in both free bending and con-
tact cases. (B) Screenshots from the demonstration
(Supplementary Video SV1) with pose estimates of the
tip: unperturbed (light) and perturbed (bold), under differ-
ent contact modes. The plot at the bottom demonstrates
resistance responses versus time for both sensors. When
both sensors deviate from reference values beyond the
threshold, contact is identified, and the algorithm adds a
perturbation correction factor to pose estimation.

SOFT ROBOT POSE ESTIMATION WITH EXTERNAL CONTACTS 9
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iii. Tilt the cup (M global x): A moment is applied by
hand, attempting to twist the cup (applying moment
around the global –x direction). Two sensor
responses increase, and two decrease (DR1,2 < –T,
DR3,4 > T). Controller transitions to State 5.

Note that these patterns occur when the finger is already
in contact with the cup, not during free bending, so they do
not directly match the patterns identified in the contact dis-
tinction section. However, this demonstrates that our HICI
method can detect not only a single contact but also multiple
contacts in sequence. Once the sensor value stabilizes under
one contact, a subsequent contact causes the sensor value to
deviate from the steady state, providing additional informa-
tion to identify the new contact.

When the gripper has identified an external perturbation
and transitioned to State 3, 4, or 5, the gripper responds
by varying pressure states of its internal air chambers
(P1 to P4), generating out-of-plane force to counteract the

external perturbation and maintain the cup’s posture
(Fig. 7C). After 20 s, the gripper returns to State 2. Exter-
nal perturbation and gripper restoring force may alter grip-
ping pose; thus, sensor resistances (Rref) may not return to
initial values. Thus, upon returning to State 2, the control-
ler recalibrates to current Rref values for future DRi calcu-
lations (Fig. 7C, notations v). If the gripper remains in
State 2 for greater than 15 s, it returns to State 1 (see Sup-
plementary Video S6).

Materials and Methods

Fabrication

To fabricate a SEMPA, we employed a sequential layer
molding method.46 We cast each component of the sensors
(Ecoflex 30 Silicone) and actuator (Dragon Skin 10 Sili-
cone) individually, and we bonded the layers together
using Ecoflex 30 Silicone as an adhesive (Smooth-On,
Macungie, PA, USA) (Fig. 8). We incorporated a thin layer

FIG. 7. Two-finger gripper case study. (A) Nomenclature of the two SEMPA gripper. Pressure, sensor numbering,
and global coordinate system. (B) A finite state machine diagram of the case study. (C) The sensors’ resistances plot
throughout the entire case study. Circled numbers below sensor response curves correspond to states numbers in state
machine B. Sensor DRi values correlate to nomenclature in A (inset stills from Supplementary Video SV6).
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of fabric-like mesh into the actuator cover layer during the
casting process. This flexible but inextensible layer limited
strain in that region, causing the finger to bend upon infla-
tion. The molds were designed using Solidworks software
(Desault Systemes, Waltham, MA, USA) and 3D printed
using a Formlabs printer (Formlabs, Somerville, MA,
USA). Following the attachment of the sensors to the actu-
ator, we injected the 1-ethyl-3-methylimidazolium ethyl
sulfate into the sensor channels using syringes. This ionic
liquid is used as a soft sensor conductor due to its low
vapor pressure and nonpermeability through elastomeric
matrices.

Contact detection

Front contact. To determine the relationship between
changes in sensor resistance and tip displacement, we
recorded sensor values as we displaced the tip of the
SEMPA using an external bracket (small aluminum
bracket mounted to a translation stage). With the SEMPA
oriented downward (Fig. 4A), we moved the bracket along
the negative x-axis from x = 30 mm to x = 0 mm and back
to x = 30 mm at a rate of 0.5 mm/s. The SEMPA was in
free bending with P1 set from 10 to 40 kPa in increments
of 10 kPa, P2 set from 10 to 40 kPa in increments of 10
kPa, and both P1 and P2 set from 10 to 40 kPa in incre-
ments of 10 kPa. During the process, the height of the
bracket was maintained constant. To characterize contact
location (in the z-direction), we used a similar procedure.
However, here the distance from the bracket to the SEMPA
along the x-axis was maintained constant, and we moved
the bracket along the z-axis from an initial position
(25 mm from the base) to the tip of the SEMPA (Fig. 4B)
and back to the starting position at a rate of 1.5 mm/s. Dur-
ing the process, we recorded the sensor’s values and used
MATLAB to find a regression equation.

Lateral contact. We collected sensor readings while we
subjected the SEMPA to an external displacement along the
y-axis using the external bracket described above. We
imposed a displacement of the SEMPA tip of 30 mm in the
–y direction, back to the initial position, followed by 30 mm
along the –y direction, and then back to the initial position
(Fig. 4C) at a rate of 0.33 mm/s. We conducted the experi-
ments under the same base orientation and pressure condi-
tions applied in front contact characterization.

Twist contact. We collected sensor readings while the tip
of the SEMPA was subjected to an external rotation about the
z-axis. We imposed this rotation by sandwiching the tip of
the SEMPA between two aluminum brackets, which were
mounted to a rotation stage. The axis of rotation of the stage
was coincident with the centerline of the SEMPA. We rotated
the tip of SEMPA –90� about its centerline, returned to the
initial position, twisted –90� about the rotation axis, and then
returned to the initial position at a rate of 1�/s. We conducted
the experiments under the same base orientation and pressure
conditions applied in front contact characterization.

Free bending modeling

In each of 26 base orientations, the SEMPA was given
pressure inputs to bend freely with 36 different P1 values
and 36 different P2 values (see Supplementary Data S2). Ini-
tially, P2 was maintained at 0 kPa while P1 was inflated
from 0 to 40 kPa in increments of 1.14 kPa. This process
was repeated 35 more times while maintaining P2 at 1.14,
2.28, . . . 40 kPa in increment of 1.14 kPa. During this pro-
cess, we used a motion capture system (Optitrack) to record
the position of each marker, and we recorded pressure inputs
(P1, P2) and sensor outputs (R1, R2) using the system shown
in Figure 2. From these data, we established a matrix of out-
put values: (x, y, z) positions and R1, R2 values for each
input pressure state: P1, P2 values for pressures from 0 to 40
kPa for each recorded combination of P1, P2 (Fig. 5B, C).
To determine the threshold, we ran this procedure twice for
each base orientation, yielding two sets of data. We used the
first set of data to find the regression polynomial model and
equation to estimate the pose and sensor values in free bend-
ing. We used the second set of data to test the model and
equation by generating a CDF plot, based on which we
picked our threshold value for contact detection (CDF insets,
Fig. 5).

Case study

We built a gripper using two SEMPA actuators con-
nected with 3D-printed brackets (Form 3, Formlabs) and
commercial fasteners. We attached the gripper to a vertical
linear stage (Fig. 1A, lower left) controlled by Arduino to
move up and down. Once the gripper sensed contact (as
described in the Results section), the linear stage was trig-
gered to lift the gripper and wait for the sensors’ responses.
Translation stage and gripper behavior are regulated by
logic states of a finite state machine (Fig. 7B). The gripper
differentiates between perturbation modes based on devia-
tions of the four sensors from anticipated values (threshold
as discussed in the Results section) and responds to differ-
ent perturbation modes with different responses. By focus-
ing on the changes in resistance rather than the absolute
values, the gripper can recalibrate at state 2 and subse-
quently identify new perturbations. By focusing on com-
paring changes in the four sensors rather than the value of
any one sensor, the gripper is able to holistically perceive
the mode of external perturbation.

Discussion and Conclusion

In this study, we developed an HICI method that enables a
SEMPA to self-sense and perceive the mode of external

FIG. 8. An overview of the molding and sequential bond-
ing (Steps 1, 2, and 3) manufacturing process of SEMPA
(left) and illustration of its internal structure (right).
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perturbations and estimate the resulting displacement. We
characterized the responses of the SMEPA’s two onboard
resistive sensors to front, lateral, and twist contacts during
free-bending at various input pressures. We developed a
data-driven pose estimation model for the SEMPA in free
bending in 26 base orientations (to account for gravity). We
generated a matrix transform method to account for the defor-
mation caused by external contact. We augmented the free-
bending model with the matrix transform to estimate the
perturbed pose of the SEMPA under front, lateral, and twist
contact. This integration allowed us to achieve real-time pro-
prioception of 2 DOF soft robot actuator. To further demon-
strate the effectiveness of this soft robot’s proprioception
method in control work, we designed a two-finger gripper
capable of identifying and responding to different perturba-
tions while gripping a cup.

The main purpose of this work was to demonstrate the
feasibility of the HICI method in the proprioception and con-
trol of soft robots. The single-finger SEMPA and two-finger
gripper provided compelling demonstrations of this method
during the flexion portion of the flexion–relaxation cycle in
static and quasistatic conditions. Further development is
desirable to extend its application to dynamic scenarios,
where contacts occur during high-speed movement including
dynamic effects. This could involve incorporating a hystere-
sis solver into the current framework to address the sensors’
response delays.

Further development could also explore applying the
HICI method on a more complex robot (perhaps a quadrupe-
dal walker) to perceive a more complex soft robot geometry
and handle multiple simultaneous contacts. This complexity
can be alleviated by incorporating additional sensors and
employing a classification neural network to interpret the
sensors’ response patterns that exceed human analytical
capabilities. The ultimate goal is to integrate this novel
method into closed-loop feedback control on a soft robot,
enabling it to perceive and respond to events such as force
control in human–robot interactions or obstacle-aware trajec-
tory optimization. This article lays the groundwork for such
future advancements. The HICI method can be used on any
soft robot, which includes (or could be made to incorporate)
multiple deformation sensors.

The field of soft robotics has long sought a robust method
of closed-loop control but has yet to converge on a generally
accepted solution. In order to control a soft robot, we must
first have a reliable perception of its pose (in free bending
and under all likely external perturbations). Not constrained
to one type of physical system or underlying controller, this
approach can be used by many soft robots searching for a
robust means of proprioception.
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