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Abstract— This paper presents a framework for designing
provably safe feedback controllers for sampled-data control
affine systems with measurement and actuation uncertainties.
Based on the interval Taylor model of nonlinear functions,
a sampled-data control barrier function (CBF) condition is
proposed which ensures the forward invariance of a safe set
for sampled-data systems. Reachable set overapproximation
and Lasserre’s hierarchy of polynomial optimization are used
for finding a margin term in the sampled-data CBF condition.
Sufficient conditions for a safe controller in the presence of
measurement and actuation uncertainties are proposed. The
effectiveness of the proposed method is illustrated by a numer-
ical example and an experimental example that implements the
proposed controller on the Crazyflie quadcopter in real-time.

I. INTRODUCTION

Designing feedback controllers that enforce safety speci-
fications is a recurring challenge in many real systems such
as automotive and robotic systems. Safety conditions are
normally specified in terms of forward invariance of a set,
which can be established through the barrier function (or
barrier certificate) without finding trajectories of a system
[1]-[3]. For control systems, controlled invariant sets are
used to encode the correct behavior of the closed-loop
systems and characterize a set of feedback control laws that
will achieve it [4], [5]. Inspired by automotive safety-control
problems, [6]-[8] proposed reciprocal and zeroing control
barrier functions (CBFs) which extend previous barrier con-
ditions to only requiring a single sub-level set be controlled
invariant. Families of control policies that guarantee safety
can be obtained by solving a convex quadratic program (QP).
This CBF-QP framework has been used in applications such
as automotive safety systems, bipedal robots, quadcopters,
robotic manipulators, and multi-agent systems [9]-[13].

CBFs proposed in [6]-[8] provide forward invariance
guarantees for the safety set in the continuous-time sense,
but require the control law being updated continuously.
This requirement is difficult to realize in practice because
most controllers are digitally implemented in a sampled-data
fashion and the time to solve the convex QP is not negligible
in safety-critical applications. Therefore, new conditions are
needed to ensure the forward invariance for sampled-data
systems with piecewise-constant controllers (also called zero-
order-hold controllers). CBFs for sampled-data systems have
been investigated in [12], [14]-[18]. These existing works
are either designed only for a specific type of systems or
based on non-convex optimization which is not suitable for
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real-time control implementations. On the other hand, almost
all the existing results using CBFs rely on accurate state and
actuation information, which is difficult to obtain in practice.
In [19], a measurement-robust CBF was proposed for the
safety of learned perception modules; in [20], an unscented
Kalman filter is integrated with CBF-QP to attenuate the
effects of state disturbances and measurement noises. In spite
of these interesting results, a systematic approach to handle
measurement and actuation uncertainties for the CBF-based
safe controller is still lacking, especially one that is suitable
for real-time applications.

This paper presents a safety control design framework
for sampled-data systems in the presence of measurement
and actuation uncertainties, by leveraging tools from interval
analysis and CBFs. The contributions are at least threefold:
(i) Based on the interval Taylor model of nonlinear functions,
a sampled-data control barrier function (SDCBF) condition
is proposed to guarantee the forward invariance of a safe
set for sampled-data systems. (ii) Sufficient conditions for
CBF-based sampled-data safe controller in the presence of
inaccurate state measurement and actuation are proposed.
(iii) Efficient algorithms are proposed to compute the new
SDCBF conditions utilizing interval arithmetic and poly-
nomial optimization techniques, and implemented on the
Crazyflie quadcopter hardware.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Control Barrier Functions

Consider a control affine system
&= F(z,u) := f(z) + g(2)u, (D

where x € R*, v € U C R™, and f : R — R”
and g : R™ — R™ ™ are locally Lipschitz continuous.
Given a control signal u(t), the solution of (1) at time ¢
with initial condition o € R"™ at time ¢y is denoted by
x(t; o, o) or simply z(t) when tg, z( are clear from context.
For simplicity, assume that the solution of (1) exists for all
t > to. A set S is called (forward) controlled invariant with
respect to system (1) if for every zy € S, there exists a
control signal u(t) such that x(¢;tg,zo) € S for all ¢ > ¢.
The set S is called safe if it is controlled invariant.

The (forward) reachable set of system (1) from an initial
set Xy C R™ at time t > ty is defined as R(t, &) =
{z(t;t0,20) | 0 € Xp,u € U}. The (forward) reachable
tube of system (1) from an initial set Xy over a time interval
[tl,tg] where to > t1 > tgis R([tl,tg}, Xo) £ {x(t; to, J)o) |
Tg € Xp,t € [tl,tQLU S U}



Consider a safe set C C R" defined by
C={zeR":h(z)>0} (2)

where h : R™ — R is a sufficiently smooth function. Zeroing
CBFs with relative degree 1 were first proposed in [7], and
generalized to CBFs with a higher relative degree in [21],
[22]. In this paper, we develop our results for CBFs with a
general relative degree. Given a C"(r > 1) function h(z)
with a relative degree r, it is called a zeroing CBF if there
exists a column vector a € R"” such that Vx € R",

sup[Lh(z) + LyLy 'h(z)u+a'n(z)] >0  (3)
uelU

where n(z) = [L}'h, L} "?h,...h]T € R", and a =
[a1,...,a,]T € R" is chosen such that the roots of p;(\) =
A+ N+ L+ a_ )\ + a, are all negative reals
—Aly ey, — A < 0 [21], [22]. The set of control inputs that
satisfy (3) for any given € R" is defined as K,cpe(z) =
{fue U] Lh(z) + LyL7  h(z)u +aTn(z) > 0}.

Define functions si(x(t)) for k = 0,1, ...,7—1 as follows:

sola(0) = h(t), se(al) = (3 + M)ser. @)

It was shown in [22] that if s;(2(0)) > Ofork =0,1,...,r—
1, then any locally Lipschitz controller u(z) € {u € U |
Ly L h(z)u+ Lyh(x) +an(x) > 0} will guarantee the
forward invariance of C. For any given z, the safe control
law is obtained by solving the following convex CBF-QP:

(CBF-QP)

u(x) = argmin  ||u — Unom||2
uelU

s.t. Lph(z) + LgL;flh(x)u +a'n(x)>0
where Uy, 15 @ nominal controller that is potentially unsafe.

B. Interval Arithmetic

A real interval [a] = [a, a] is a subset of R. The set of all
real intervals of R is denoted as IR. The set of n-dimensional
real interval vectors is denoted by IR"™. Real arithmetic
operations on R can be extended to IR as follows: for o €
{+: =% =1 [alo[b] = {infoe(a) yep) TOY, SUPe[a),yep) TO
y}. Classical operations for interval vectors are direct exten-
sions of the same operations for real vectors [23], [24].

C. Problem Statement

The safety guarantee provided by the control input u*(x)
from (CBF-QP) is predicated on the following implicit
“assumptions”: (i) the time to solve the QP is negligible
so that the CBF-QP controller is updated continuously;
(ii) the accurate state information is known; (iii) the exact
control input generated by (CBF-QP) is implemented by
the actuator. However, these “assumptions” can hardly be
satisfied in reality: modern systems are predominantly based
on digital electronics, which means that the input can only
be updated at discrete time instances; the state information
is usually obtained from sensors and contaminated with
unknown noise; the desired control command is not perfectly
achievable by real-life actuators.

For a sampled-data system, the sampling instants are
described by a sequence of strictly increasing positive real

numbers {ty}, k € Z>o, where tg = 0, tp41 — tp > 0,
limg_ oo tr = 00. Define the sampling interval between ¢y
and tx11 as Ay = tgy1 — tr. At each sampling instance ¢y,
the state and input of the system are denoted as xj = x(t)

and up = wu(ty), respectively. The control input w(t) is
assumed to be a piecewise constant signal, i.e.,
u(t) = Uk, Vit € [tk7tk+1). 5)

At each sampling time tj, the control input uy is chosen
from the set K,chr(xg), i.e.,

Lih(w) + LeLy ' bz )ug + 2" n(zk) > 0. (6)

The CBF condition in (6) may not be satisfied during inter-
sampling times [ty,r11), and therefore, it may not hold
in the continuous-time sense, which means that the forward
invariance of the safe set C may not be guaranteed.

Consider system (1) and a safe set C shown in (2). Suppose
that the state measurement and actuation are perfect. The first
problem that will be studied in this paper is stated as follows.

Problem 1: Design a sampled-data CBF-QP controller
shown in (5) that renders the set C forward invariant.

The second problem considers system (1) with inaccurate
state estimation and imperfect actuation. We assume that we
only have access to an estimate &j of the true system state
xj, with bounded estimation error. Similarly, we assume the
real input produced by the imperfect actuator differs from
the desired input within a bounded range.

Problem 2: With inaccurate state estimation and imper-
fect actuation, design a sampled-data CBF-QP controller
shown in (5) that renders the set C forward invariant.

III. SAMPLED-DATA CBF CONDITION BASED ON
INTERVAL ANALYSIS

A. Interval Taylor Model of Nonlinear Functions

Solving Problem 1 involves the computation of the range
of functions using interval arithmetic. The simplest method
is to directly apply interval arithmetic to each term of the
function [23], [24]; though fast, this method often results in
rather conservative bounds. Instead, the interval Taylor model
will be utilized in this paper to obtain tighter bounds of the
range of functions.

Definition 1: [Def. 1 in [25]] Let f : S C R* — R
be a function that is (n + 1) times continuously partially
differentiable on an open set containing the domain S. Let
xo be a point in S and P" the n-th order Taylor polynomial
of f around xg. Let I be an interval such that f(xz) €
P" (z —x9) + I, Yz € S. Then the pair (P™,I) is called
an n-th order Interval Taylor model of f around z(y on S.

In general, the reminder interval I will be smaller with a
larger value of n.

B. Sampled-data CBF

The main idea of solving Problem 1 is to design a margin
term ¢(xy, Ag) that accounts for the difference between
the continuously updated controller and the sampled-data
controller, and add it to the CBF condition (6) such that



the piecewise-constant controller as shown in (5) can guar-
antee controlled invariance of set C in continuous time (i.e.
h(x(t)) > 0 for all ¢ > 0 whenever h(z(0)) > 0).

Recall that z;, = x(t;). Given a CBF h with relative
degree r (r > 1), we call the following inequality

L;h(mk) + LgL;ilh(wk)uk + aTn(mk) + ¢(xk7 Ak) >0

the sampled-data CBF (SDCBF) condition at sampling in-
stance t;.. Define the set

Kzscbf(xkv Ak) = {u eU | L}h(l’k) + LgL;ilh((Ek)u
+a'n(z) + lak, Ar) > 0}

as the sampled-data admissible input set for the sampled state
x, and the sampling interval Aj. Define a function

A{(I, U, xk) = f(l‘, ’LL) - f(xka U)
where £(-,u) £ Lh() + LgL;flh(-)u + a'n(-). Define
z = (x",u")T. For any given sampling interval A; > 0,
define the set Z; as the Cartesian product of the reachable
tube R([tx, tx + Ak, 1) and the admissible set of the input
U,ie., Zr 2 R([t,tr + Ar], z) x U. Then we have the
following result that solves Problem 1.

Proposition 1: Consider control system (1) and a set C C
R™ defined by (2) for a C" function h : R™ — R that has a
relative degree r. Suppose that z}; = (x,”;—r, uZT)—r is a given
state-input pair in the set Z, i.e, z; € 2, and (P, Ii) is
the n-th Taylor model of A{(x,u,xy) around z3, i.e.,

A&(z,u, k) € P (z — 2) + I, V2 € Z. (7
Suppose that ¢(xy, Ay) is chosen to be

oz, Ax) = I, + &y, ®)

where I, is the lower bound of I}, ¢} = min,cz, Pl (z —
z;}), and the resulting set K7 (xy,Ag) is non-empty. If
sk(z(0)) > 0 for k =0,1,...,r — 1, where sj, are given in
(4), then any input u(t) = ug,t € [tx,tr + Ag) such that
up € K 1 ¢(ar, Ag) will render h(z(t)) > 0 for all ¢ > 0.
Proof: By the definition of ¢(xzy, Ax) and the inclusion
relation (7), A&(x, u, x) > ¢(x, Ag) holds for any z € Zj.
For any t € [t, tr + Ag), since A&(x, ug, xx) = &(z, up) —
f(xhuk) it follows that Lrh(x) + LgLTlh(x)uk +
aln(x) = L% thizk) + LgLY™ h(xk)uk + aTn(J;k) +
A&(x, ug, Tg) > L h(zy) + L Lr Yhizr)ug +a n(zy) +
¢z, Ag) >0, Where the last 1nequahty is from the defini-
tion of K7 ¢(xk, Ag) and the fact that u, € K ¢ (2r, Ag).
Thus, by induction, L%h(z) + LgL}*lh(:c)u +aln(x) >0
holds for any ¢t > 0, which implies that h is a CBF for
C. Since u(t) is piecewise constant and therefore locally
Lipschitz, the conclusion follows by the results of [22]. MW
Note that z; can be any element in the set Zj. In this
paper, we will choose z; = (zf ", uf )T = (24 ,u.")T
where u. is the center of the input admissible set U.
The sampled-data safe controller is obtained by solving
the following (SDCBF-QP) only at discrete sampling times:

u*(zg) = argmin  ||u — Upom |2 (SDCBF-QP)
uelU

s.t. L;h(:ck)+L9L;_1h(xk)u+aTn(wk)+¢5(xk, Ag)>0

where k € Z>¢, and o, 1S any given nominal controller.

Next, we show how to compute the term ¢(xy, Ay) in the
SDCBF condition efficiently. For nonlinear systems the exact
reachable tube R([ty,tr + Ak, zx) is generally very chal-
lenging to compute, so we will use an over-approximation
of R([tr,tr + Ax], 1), denoted as R([tr, tx + Ar), k),
to compute the Taylor model (7) and the minimization (8).
Using the over-approximated reachable tube will result in a
smaller ¢(zy, Ay) which will render the admissible input set
K} ¢(xk, Ay) smaller; however, as long as K, -(zx, Ag) is
non-empty for every k, any input u(t) = ug, t € [tg, tr+Ak)
such that uy, € K7 (2, Ag) will still guarantee the forward
invariance of the set C.

The computation of ¢(xx, Ax) in Proposition 1 involves
two tasks: 1) find R([tx,tx + Ag],7x) and 2) compute
min,cz, PJ'(z — z;). In the following, we will discuss how
these two tasks can be accomplished efficiently.

1) Find ﬁ([tk, ti —|—Ak], x). To find ﬁ([tk, t +Ak], k),
we will utilize the method in [26], which is based on the
linearization of a nonlinear system with interval remainder.
Consider a control system given in (1) and recall that z =

(z7,u")T. Given a state-input pair z; = (' ,uf')’ =
(", u.")T", the infinite Taylor series of the i-th state x;

can be overapproximated by its first order Taylor polynomial
and its Lagrange remainder as follows:

8}322) * (z—z1) + Li([0,1])

Z:Zk

T 9%F; *
where Li([0,1]) = {5(z—z)" T [ (= =) |
C=2z+0(z—%),0 € [0,1]} € IR and z is restricted
to a convex set. Therefore, system (1) can be written into
the following differential inclusion form:

i€ F () + az;iz) =)+ L(0.1)

= Az — i)+ B(u — up) + F (xy, up)+ L([0,1]) (9

@ €F; (T, uy) +

where A = (df(x) +89(3f) ) c Rnxn7 B =
g(z}) € R™™L([0,1]) = [Ly([0] 1]) - Ln([0,1])]T €
IR". The over-approximated reachable tube R([tk, te +

Apl,z) can be obtained by R([tr,tr + Arl,2i)
Riin(xg) @© Rerr(zr), where Ryn(xp) is the over-
approximated reachable tube of the linearized system shown
in (9) with L = 0, Req-(z) is the over-approximated
reachable tube of the linearized system resulting from the
remainder term L, and @ denotes the Minkowski sum. As in
[26], we choose zonotopes or intervals as the representation
of reachable tubes for computational efficiency. We utilize
the same algorithms presented in [26] to compute Ry, ()
and R.,..(xy) for state xj, at each sampling time ¢.

2) Compute min,cz, P]'(z — z;,). By the construction of
ﬁ([tk,tk + Ag],zx) above, the set Zj is represented as a
zonotope or intervals, which can be readily expressed as
a polytope, a more general set representation than zono-
tope/interval. Specifically, there exists a matrix Hy and a
column vector 1 whose elements are all 1 with appropriate

dimensions such that 2, = {(z,u) | Hj (Z < 1}



Since Pj'(z — z};) is a polynomial with variables = and wu,
the optimization problem min,cz, P{*(z — z}) becomes a
polynomial optimization problem:

- nl (T T3
o o () ()
s.t. Hyg < ) <1

A polynomial optimization problem is generally non-convex
and known to be NP-hard. It can be solved using non-
convex global solvers, such as BMIBNB in YALMIP or
using relaxation methods either based on linear programming
or semidefinite programming. In this paper we choose to
solve (POP) by using Lasserre’s linear matrix inequality
(LMI) relaxations to obtain a lower bound for ¢7, the global
minimum of (POP) [27]. The relaxed LMIs in Lasserre’s
hierarchy are convex and can be solved using the interior-
point algorithm in polynomial time, and the solutions of the
LMIs provide a monotonically nondecreasing sequence of
lower bounds for ¢7. Although the global optimal solution
of (POP) can be obtained by increasing the relaxation order,
the computational burden increases significantly with larger
relaxation order. On the other hand, if ¢(xy,Ay) is chosen
to be ¢(xk, Ar) = I, + ¢, where ¢ is any lower bound
of ¢7, then from the proof of Pr0p0s1t1on 1 we know uy, €
K} ¢(xk, Ay) will still render the set C forward invariant.

Corollary 1: Suppose that z € 2, (P}, 1)) is the n-
th Taylor model of A{(z,u,xy) around 2}, ¢(zk,Ar) is
chosen to be ¢(xx, Ay) = I, + ¢, where I is the lower
bound of I, Qk is the optimal value of any Lasserre’s
LMI for (POP), and K}, ¢(xi, Ag) # 0 for every k. Then
any input u(t) = ug,t € [tg,tx + Ag) such that u, €
K3 ¢ (xr, Ay) will render the set C forward invariant.

We use SparsePOP to exploit the sparse structure of
polynomials when applying Lasserre’s hierarchy of LMI
relaxations to (POP) [28], and use Mosek to solve the relaxed
semidefinite programmings. The computational efficiency of
finding R([tx, tx+Ax], zx) and computing min, ¢ z, P (z—
z;) will be demonstrated in simulations and experiments in
Section V.

Remark 1: In [18], three types of modified CBF condi-
tions for sampled-data systems were proposed. The com-
putation of the CBF conditions there involves non-convex
optimization problems that can be solved by nonlinear
programming solvers such as FMINCON. However, these
solvers are sensitive to the initial conditions, have no guar-
antee on termination time in general and can only find local
optimum values, which make them unsuitable for safety-
critical applications. In addition, imperfect state estimation
and actuation were not considered in [18]. In [17], a robust
backup controller-based CBF controller under state uncer-
tainty is proposed requiring the sampled-data system to
be incremental stable. Besides, the CBF condition in [17]
involves the nonlinear robust optimization problems which
might not be tractable for complex nonlinear dynamics.

Compared with existing results, the proposed framework
is applicable to any nonlinear control affine dynamics. In

particular, computing ¢(x,Ay) is based on convex pro-
grams and has several advantages: (i) the related LMIs are
convex programs that can be solved efficiently with real-
time computation guarantees; (ii) by choosing the order of
the Taylor polynomial and the relaxation order of Lasserre’s
LMI for (POP), we can make a trade-off between the
computation’s effiency and optimality; (iii) any lower bound
of ¢(xk, Ax) can be used to guarantee the safe set forward
invariant as stated in Corollary 1.

IV. SAFETY UNDER MEASUREMENT & ACTUATION
UNCERTAINTIES

In practice, the exact state information of a control system
is unknown. For sampled-data systems, an estimate of the
system state is available at sampling instances, which can
be obtained from an observer such as Luenberger or interval
observer, or from a Kalman filter. The following assumption
provides a measure of the estimation accuracy.

Assumption 1: At any time instance t, k € Z>o, the true
state x;, and the estimated state &) satisfy zp € {Zp} ®
B, (0), where B._(0) is the 2-norm ball at the origin with
a radius of €, > 0, i.e., B¢, (0) = {z € R™ | ||z]|2 < €y}

Assumption 1 means that the measurement uncertainty is
bounded by some given parameter €., so we have that z;, €
B, (ix) = {z € R" | ||# — dl2 < e,}. Since we only
have the estimated state of the system, we will guarantee
the forward invariance of the set C utilizing the enlarged
reachable tube R ([tx, tx + Ak, Be, (&1)) = {x(t,z0) | o €
B, (%K)t € [tr,tr + Ak] u € U} and the corresponding
set Zj, defined as Zj, £ R([tg, tr + Ax), Be, (1)) x U.

Besides the state estimation uncertainty, the real system
might also have an imperfect actuator causing a deviation
between the desired input and the real input. To account for
the uncertain actuation, we need to bound this deviation and
thus guarantee the system safety for the worst-case scenario.

Assumption 2: At any time instance tr,k € Zxg, the
desired input uz and the real input u; implemented by the
system satisfy ul, € {u¢} & B, (0), where B, (0) = {u €
B | [lufls < €}

Suppose that Z; = (aﬁz,ucT)T € Z, where u, is the
center of the set U. (P}, I) is the n-th _Taylor model of
A&(z,u, 1) around 2. Let ¢(Zk, Ay) = Ik +¢>k where I,
is the lower bound of I, ¢} = min ez, PP (z — ;). Then,
we define the new admissible input set as

Ko (@, Ar) = {u € U © B, (0) | L}h(&x)
+ Ly Ly A )u + a " n(dx) + ¢(@r, Ax) > 0},

where S is the Pontryagin difference.

The following result provides a solution to Problem 2.

Proposition 2: Consider control system (1) and a set
C C R” defined by (2) for a C" function h that is a
CBF with a relative degree r such that (3) holds. Suppose
K;be(£k7 Ak) is non-empty. If mingep, (z,) sk(z) > 0 for
k=0,1, ...7 — 1, where sj are given in (4) then any input
u(t) = ud,t € [ty tr + Ay) such that ul € K2, (ir, Ay)
will render h(z(t)) > 0 for all ¢ > 0.



Proof: Since the desired input uf € K3, (&, Ag),
according to Assumption 2, the real input uj €
K5, (&, Ar) ® B, (0) which implies that u, € U and
Lyh(#r) + Loy 'h(Er)uy + a'n(@r) + o(dk, Ax) >
0. Using the definition of ¢(Zx,Ay), one can get that
LgL;_lh(x)u + Lyh(z) + a'n(z) > 0 for all t > 0.
Following the same proof as in Proposition 1, it is easy to
show the forward invariance of the set C. ]

The sampled-data safe controller with inaccurate state
estimation and imperfect actuation is obtained by solving
the following robust sampled-data CBF-QP (RSDCBF-QP)
only at discrete sampling times:

ul(dy) =

(RSDCBF-QP)

argmin I — Unom||2

ueUOB., (0)
s.t. Lph(&k)+ Lo Ly h(@r)u+a () +o(2k, Ax) >0

where k € Z>q, and Uyom is any given nominal controller.

V. SIMULATION & EXPERIMENT

In this section, we demonstrate the effectiveness of the
proposed method using two examples. For simplicity, we
will refer to the sampled-data controller with the naive
CBF constraint shown in (6) as “CBF controller” and the
safe sampled-data controller by solving (RSDCBF-QP) as
“RSDCBF controller”.

Example 1: Consider the following dynamics [29]: ©; =
—0.621 — 9, 43 = 23 +xou. Consider the safe set C = {x €
R? : h(x) > 0} where h(z) = —23 — 21 + 1, which has a
relative degree 1. Assume the input is constrained in the set
U={u|—-1<u<1}, the periodic sampling time is 0.02
seconds and a = 3. The uncertainty bounds on the estimation
error and the actuation error are both 0.1, ie., ¢, = ¢, =
0.1. We choose the nominal controller to be a stabilizing
controller based on control Lyapunov functions without
considering the safety constraint. The closed-loop system
is simulated for 10 seconds starting from the initial state
xg = [~2,1]T. The average computation time (including the
computation of ¢(zy,Ay) and solving (RSDCBF-QP)) at

2 -
~ = Nominal
—-—-CBF
15 ——RSDCBF
Constraint

05

o Safe set R

-05

-15

Fig. 1: Simulation result for Example 1. System trajectories
with three controllers are shown: (i) nominal controller
(green), which is obtained from control Lyapunov function
conditions; (ii) CBF controller (purple), which is a sampled-
data controller with the naive CBF constraint shown in (6);
(iii)) RSDCBF controller (blue), which is obtained by solving
(RSDCBF-QP). The boundary of safe set C is shown in red.

t = to,t1, ... is around 0.018 secs using MATLAB R2020b
in a computer with 3.7 GHz CPU and 32 GB memory. Fig.
1 shows system trajectories with the RSDCBF controller and
the CBF controller. It can be observed that in the presence
of state measurement and actuation uncertainties, the CBF
controller can not keep the system safe, while the RSDCBF
controller always respects safety.

Example 2: This example presents the experimental re-
sults that implements the RSDCBF controller on a Crazyflie
Nano Quadcopter. We consider the following linearized 6-
dimension quadcopter model:

. O3x3  I3x3 033
X = X+ u. 10
{03x3 03x3 I3y (19)
where x =[x y 2z 4 g 2|7 is the state and u =
T

[# ¢ Z]' is the virtual input. The model shown in (10)
is usually referred to as the double-integrator quadcopter
model and is widely used in quadcopter simulations [30].
Define the safe set C = {x € R® : h(x) > 0} with
h(x) = [hi(x), ha(x), hs(x), ha(x), hs(x), he(x)]" =
05—, +05, 05—y, y+05 06—z 2]". The
SDCBF condition for i = 1,...,6 is given by L7h;(x) +
LyLihi(x)u + a'n;i(x) + ¢i(x, At) > 0, where n;(x) =
[Lyhi(x),hi(x)]" and a = [6,8] . We use a LQR controller
as the nominal controller to track a given reference trajectory.
We choose ¢, = 0.02 and ¢, = 0.01.

The quadcopter flies for about 20 seconds to follow the
reference trajectory starting from the origin. We implement
both CBF and RSDCBF controllers in the quadcopter exper-
iments, with the periodic sampling time as 0.02 seconds. Fig.
2 illustrates the reference trajectory and the quadcopter tra-
jectories with two types of CBF-based controllers. Although
most of the trajectory using the CBF controller is inside the
constraining box (the safe set C), h(x) > 0 is violated at
some extreme points in Fig. 3. In contrast, the trajectory
using the RSDCBF controller remains in the constraining box
for all time. The experimental results show that the RSDCBF
controller can guarantee safety under measurement and ac-
tuation uncertainties, which is necessary for the quadcopter
and other safety-critical robotic applications. The average
computation time is 0.005 seconds at each sampling time.

Reference
——CBF
—— RSDCBF
0.8 [_IcConstraint

06

02

y ] A

Fig. 2: Experimental results for Example 2. Trajectories
of Crazyflie with the CBF controller (pink), the RSDCBF
controller (blue), and the reference trajectory are shown.
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i [s] t [s] i [s]

Fig. 3: Evolution of CBF h(x) in Example 2. The RSDCBF-
QP controller respects all safety constraints while the CBF
controller induces safety violations.

VI. CONCLUSION

In this paper, we proposed a framework that can guarantee
the safe control of sampled-data systems with measurement
and actuation uncertainties. Comparing with the traditional
CBF condition, the proposed SDCBF condition includes an
additional term ¢ (g, Ar) which can be efficiently solved
by computing the lower bound of a Taylor polynomial
using reachable tube approximation and polynomial opti-
mization techniques. We proved that the SDCBF-QP con-
troller can guarantee the safety constraint in continuous time
for sampled-data systems with perfect information and the
RSDCBF-QP controller can ensure safety with inaccurate
state estimation and imperfect actuation. The performance
of the proposed method was demonstrated via simulations
and hardware experiments on the quadcopter. Future work
includes approximating the model uncertainties using online
measurements and applying the proposed framework to more
realistic robotic applications such as navigating or object
tracking in unknown environment.
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