
Efficient Reachability Analysis for Convolutional Neural Networks
Using Hybrid Zonotopes

Yuhao Zhang and Xiangru Xu

Abstract— Feedforward neural networks are widely used in
autonomous systems, particularly for control and perception
tasks within the system loop. However, their vulnerability to ad-
versarial attacks necessitates formal verification before deploy-
ment in safety-critical applications. Existing set propagation-
based reachability analysis methods for feedforward neural
networks often struggle to achieve both scalability and accuracy.
This work presents a novel set-based approach for comput-
ing the reachable sets of convolutional neural networks. The
proposed method leverages a hybrid zonotope representation
and an efficient neural network reduction technique, providing
a flexible trade-off between computational complexity and
approximation accuracy. Numerical examples are presented to
demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

The integration of neural networks into autonomous sys-
tems has revolutionized how these systems interact with and
respond to their environments. For instance, Fully-connected
Feedforward Neural Networks (FFNNs) are commonly used
to approximate nonlinear and complex control policies, while
Convolutional Neural Networks (CNNs), with their powerful
ability to process and interpret intricate visual data, play a
critical role in perception tasks. However, deploying neural
networks in safety-critical applications introduces significant
challenges, particularly due to their vulnerability to adver-
sarial attacks, where minor input perturbations can lead to
substantial deviations in output [1], [2].

Recent advancements have focused on reachability-based
methods for the formal verification of deep neural networks,
leveraging their computational efficiency. Many of these
methods focus on analyzing FFNNs by abstracting the non-
linear activation functions using various set representations,
enabling both forward and backward reachability analysis
through set-propagation techniques [3], [4], [5], [6]. De-
spite their theoretical soundness, these approaches often face
challenges with scalability and flexibility, especially when
applied to large-scale FFNNs. Compared to FNNs, CNNs
possess more complex architectures, incorporating convolu-
tional layers and max pooling layers. The diversity of layer
types and the depth of these architectures present significant
challenges in developing efficient and robust verification
methods. Although several methods exist for handling CNNs
such as [7], [8], [9], [10], [11], [12], [13], only a few are
capable of handling real-world networks while providing the
flexibility needed for efficient and accurate analysis.

This work was supported in part by National Science Foun-
dation grant CMMI-2237850, CNS-2222541, and OAC-2209791. Y.
Zhang and X. Xu are with the Department of Mechanical Engi-
neering, University of Wisconsin-Madison, Madison, WI, USA. Email:
{yuhao.zhang2,xiangru.xu}@wisc.edu.

Recently, an approach based on Hybrid Zonotopes (HZs)
was proposed for the reachability analysis and verification
of FFNNs [6], [14], [15], [16]. With the capability of
representing non-convex sets with flat faces [17], HZs enable
exact abstractions of ReLU-activated FFNNs through simple
matrix operations. Additionally, HZs provide a unified tool
for handling both non-convex sets and nonlinear plant mod-
els. Nevertheless, the aforementioned approaches are limited
to FFNNs and also face scalability challenges.

To address these challenges, this work introduces an
efficient set-based method for computing the reachable sets
of FFNNs and CNNs. The proposed approach combines
HZ representation with an efficient neural network reduction
technique, providing the flexibility to balance computational
complexity and approximation accuracy. The contributions
of this work are twofold: i) A flexible and efficient method
is proposed for reducing the number of neurons in a FFNN
while preserving its intrinsic input-output mapping proper-
ties, with bounded approximation errors. ii) Based on this
neuron network reduction, an HZ-based approach is pre-
sented for computing the reachable sets of FFNNs and CNNs
by transforming various CNN layers into equivalent fully-
connected layers. The constructed HZ representations are
shown to over-approximate the exact reachable sets, while
exact reachability analysis can be recovered as a special case.
The performance of the proposed method is demonstrated
through numerical examples.

II. PRELIMINARIES & PROBLEM STATEMENT

Notation. The i-th component of a vector x ∈ Rn is
denoted by xi with i ∈ [n] ≜ {1, . . . , n}. The entry in
the i-th row and j-th columm of a matrix A ∈ Rn×m is
denoted by A[i,j]. The i-th row (resp. j-th columm) of A
is denoted by A[i,:] (resp. A[:,j]). For a set C ⊂ [n] (resp.
C′ ⊂ [m]), A[C,:] (resp. A[:,C′]) denotes a submatrix of A
with all rows i ∈ C (resp. all columns j ∈ C′). Given sets
X ⊂ Rn, Z ⊂ Rm and a matrix R ∈ Rm×n, the generalized
intersection of X and Z under R is X ∩R Z = {x ∈
X | Rx ∈ Z}. An interval with bounds a, a ∈ Rn is
denoted as [[a,a]]. The projection of a set X ⊂ Rn onto
a set of coordinates Φ = {i1, . . . , ik} ⊂ [n] is denoted as
projΦ(X) ≜ {[ei1 · · · eik]

⊤x | x ∈ X} ⊂ Rk. The
cardinality of the set Φ is denoted as |Φ|. Given a vector
x ∈ Rn, the maxout function is max(x) ≜ maxi∈[n] xi.

First, we provide the definition of hybrid zonotope.
Definition 1: [17, Definition 3] The set Z ⊂ Rn is a

hybrid zonotope if there exist c ∈ Rn, Gc ∈ Rn×ng , Gb ∈
Rn×nb , Ac ∈ Rnc×ng , Ab ∈ Rnc×nb , b ∈ Rnc such that

Z = {Gcξc+Gbξb+c | ξc ∈ Bng
∞ , ξb ∈ {−1, 1}nb ,Acξc+

Abξb = b} where Bng
∞ = {x ∈ Rng | ∥x∥∞ ≤ 1} is the unit

hypercube in Rng . The HCG-representation of Z is given by
Z = ⟨Gc,Gb, c,Ac,Ab,b⟩.

Next, we introduce the notations related to FFNNs, which
consist exclusively of fully-connected layers. Let πF : Rn →
Rm be an ℓ-layer FFNN with weight matrices {W (k)}k∈[ℓ]

and bias vectors {v(k)}k∈[ℓ]. Denote x ∈ Rn as the input of
πF and x(k) ∈ Rnk as the neurons of the k-th layer. Then,

x(0) = x, (1a)

x(k) = Lfc(W
(k),v(k),x(k−1)), for k ∈ [ℓ− 1], (1b)

πF (x) = W (ℓ)x(ℓ−1) + v(ℓ), (1c)

where Lfc(W
(k),v(k),x(k−1)) ≜ σ(W (k)x(k−1) + v(k))

and σ is the vector-valued activation function constructed
by component-wise repetition of the activation function σ(·),
i.e., σ(z) ≜ [σ(z1) · · · σ(znk

)]⊤. In this work, σ is assumed
to be the ReLU function, but the proposed method can be
easily extended to other activation functions (such as sigmoid
and tanh) by employing their HZ approximations [16].

Given an input set Z ⊂ Rn of the FFNN πF , the (output)
reachable set of Z is defined as RπF

(Z) ≜ {z ∈ Rm | z =
πF (x),x ∈ Z} and the graph set of πF over Z is defined
as GπF

(Z) ≜ {(x, z) ∈ Rn+m | z = πF (x),x ∈ Z}.
Now we introduce notations related to CNNs, which

combine fully connected layers with non-fully-connected
layers. Let πC : RcI×hI×wI → Rm be an ℓ-layer CNN with
parameters Θ ≜ (θ(1),θ(2), . . . ,θ(ℓ)), where θ(k) denote the
learnable parameters and hyperparameters associated with
the k-th layer, for k ∈ [ℓ]. We assume πC consists of
the following commonly-used layer types: convolution layer
Lconv , average pooling layer Lap, max pooling layer Lmp,
and fully-connected layer Lfc. Given an image input to the
CNN πC as I ∈ RcI×hI×wI with width wI , height hI and
number of channels cI , the output of πC is computed as

x(0) = I, (2a)

x(k) = L(k)(θ(k),x(k−1)), for k ∈ [ℓ], (2b)

πC(I) = x(ℓ), (2c)

where L(k) ∈ {Lconv,Lap,Lmp,Lfc}, for k ∈ [ℓ]. Depend-
ing on the type of the layer, the neurons of the k-th layer
x(k) is either a 3D tensor or a vector, i.e., x(k) ∈ Rck×hk×wk

for L(k) ∈ {Lconv,Lap,Lmp} and x(k) ∈ Rnk for L(k) =
Lfc. The associated parameters θ(k) may include learnable
parameters such as weights W (k) and bias v(k), as well
as hyperparameters such as padding sizes (p

(k)
h , p

(k)
w) and

strides (s
(k)
h , s

(k)
w).

Given an input set I ⊂ RcI×hI×wI to πC , which can be
considered as a set of perturbed images, the reachable set of
πC that contains all possible outputs is defined asRπC

(I) ≜
{y ∈ Rm | y = πC(x),x ∈ I} and the graph set of πC over
I is defined as GπC

(I) ≜ {(x,y) ∈ RcI×hI×wI+m | y =
πC(x),x ∈ I}.

In this work, we aim to develop an efficient HZ-based
approach for computing an over-approximated reachable set,

R̂πC
(I), for a given CNN πC and an input set I, such that

R̂πC
(I) ⊇ RπC

(I). This method provides the flexibility to
balance between computational efficiency and approximation
accuracy. To that end, we first transform the CNN πC into
an equivalent FFNN πF (see Section III), and then develop
a flexible NN reduction method for πF that enables the
computation of a closed-form over-approximation R̂πF

(I),
which is equivalent to R̂πC

(I) (see Section IV).

III. TRANSFORMATION FROM CNN INTO FFNN

In this section, we convert each of the convolution and
pooling layers in πC into a fully connected layer, such that
a given CNN πC : RcI×hI×wI → Rm is transformed into
an equivalent FFNN πF : RcI ·hI ·wI → Rm. The definitions
of convolution layers and max pooling layers are based on
[18, Chapter 9].

A. Convolution Layer

The convolution layer of a CNN is defined below.
Definition 2: Given an input x ∈ Rcx×hx×wx to the

convolution layer Lconv of a CNN with activation function
σ : R → R and parameters θconv = (W ,v, ph, pw, sh, sw),
where W ∈ RfW×cx×hW×wW are the filter weights with fW
denoting the number of filters, v ∈ RfW×1×1 is the bias,
pw ∈ R and ph ∈ R are the padding sizes along the width
and height, respectively, and sw ∈ R and sh ∈ R are the
strides along the width and height, the output of the convolu-
tion layer, y = Lconv(θconv,x) ∈ Rcy×hy×wy , is computed
as y[icy ,ihy ,iwy]

= σ(
∑cx

icx=1

∑hW

ihW
=1

∑wW

iwW
=1 v[icy ,1,1] +

W[icy ,icx ,ihW
,iwW

] · x̄[icx ,jh,jw]), where icy ∈ [cy], ihy
∈

[hy], iwy
∈ [wy], jh = ihW

+ (ihy
− 1)sh − ph, jw =

iwW
+ (iwy − 1)sw − pw, and

x̄[icx ,jh,jw] =

{
x[icx ,jh,jw], if (jh ∈ [hx]) ∧ (jw ∈ [wx]),
0, otherwise.

The number of output channels is cy = fW , while the height
and width of the output are hy = ⌊hx−hW+ph+sh

sh
⌋ and wy =

⌊wx−wW+pw+sw
sw

⌋, respectively.
From the definition above, it can be observed that the

convolution layer consists of a linear mapping of the tensor
input x, weights W , bias v, and a nonlinear activation
function σ. The following lemma shows that the convolution
layer can be transformed into an equivalent fully-connected
layer by flattening the input x and output y into vectors
following the row-major order:

x̃ ≜
[
x[1,1,1] x[1,1,2] · · · x[cx,hx,wx]

]⊤
, (3a)

ỹ ≜
[
y[1,1,1] y[1,1,2] · · · y[cy,hy,wy]

]⊤
. (3b)

Lemma 1: Given a convolution layer Lconv with acti-
vation function σ : R → R and parameters θconv =
(W ,v, ph, pw, sh, sw), let x ∈ Rcx×hx×wx and y ∈
Rcy×hy×wy represent the input and the corresponding output
of Lconv , and let x̃ ∈ Rcx·hx·wx and ỹ ∈ Rcy·hy·wy

denote the flattened input and output vectors defined in (3),
respectively. Then,

ỹ = σ(W̃ · x̃+ ṽ) (4)

where W̃ = W̃ conv · W̃ p, ṽ = [v[1,1,1] · · · v[cy,1,1]]
⊤ ⊗

1hy·wy×1, σ is the vector-valued activation
function, ⊗ is the Kronecker product, and matrices
W̃ p ∈ R(cx·(hx+2ph)·(wx+2pw))×(cx·hx·wx) and
W̃ conv ∈ R(cy·hy·wy)×(cx·(hx+2ph)·(wx+2pw)) are
zero matrices except for the following entries:
W̃ p

[irow,icol]
= 1, W̃ conv

[jrow,jcol]
= W[icy ,icx ,ihW

,iwW
],

with irow = (icx−1)·(hx+2ph)·(wx+2pw)+ph·(wx+2pw)+
(ihx−1)·(wx+2pw)+pw+iwx , icol = (icx−1)·hx·wx+(ihx−
1)·wx+iwx , jrow = (icy−1)·hy·wy+(ihy−1)·wy+iwy , jcol =
(icx − 1) · (hx +2ph) · (wx +2pw)+ (iwy

− 1) · sw + iwW
+

(ihW
− 1) · (wx + 2pw) + (ihy

− 1) · (wx + 2pw) · sh, for
any icx ∈ [cx], ihx

∈ [hx], iwx
∈ [wx], icy ∈ [cy], ihy

∈
[hy], iwy ∈ [wy], ihW

∈ [hW], iwW
∈ [wW].

Using Lemma 1, the convolution layers in a CNN can
be transformed into fully-connected layers with flattened
input x̃, output ỹ, weight matrix W̃ and bias ṽ. Although
W̃ is a large matrix, the majority of its entries are zeros,
allowing it to be stored in a sparse matrix format to reduce
the computational overhead.

Remark 1: The average pooling layer in a CNN can be
considered a special case of a convolutional layer, where the
filter has uniform weights summing to 1 and a zero bias.
Consequently, the formulation in Lemma 1 applies directly.

B. Max Pooling Layer

The max pooling layer of a CNN is defined as follows.
Definition 3: Given an input x ∈ Rcx×hx×wx to

the max pooling layer Lmp with parameters θmp =
(hp, wp, ph, pw, sh, sw), where hp ∈ R and wp ∈ R are
the pooling window sizes, pw ∈ R and ph ∈ R are the
padding sizes, and sw ∈ R and sh ∈ R are the strides along
the width and height, respectively, the output of the max
pooling layer, y = Lmp(θmp,x) ∈ Rcx×hy×wy , is computed
as y[icx ,ihy ,iwy]

= maxihp∈[hp],iwp∈[wp] x̄[icx ,jh,jw], where
icx ∈ [cx], ihy

∈ [hy], iwy
∈ [wy], jh = ihp

+ (ihy
− 1)sh −

ph, jw = iwp + (iwy − 1)sw − pw, and

x̄[icx ,jh,jw] =

{
x[icx ,jh,jw], if (jh ∈ [hx]) ∧ (jw ∈ [wx]),
0, otherwise.

The height and width of the output are hy = ⌊hx−hp+ph+sh
sh

⌋
and wy = ⌊wx−wp+pw+sw

sw
⌋, respectively.

The max pooling layer can be transformed into an equiv-
alent fully-connected layer with the maxout activation func-
tion, as shown in the following lemma.

Lemma 2: Given a max pooling layer Lmp with parame-
ters θmp = (hp, wp, ph, pw, sh, sw), let x ∈ Rcx×hx×wx and
y ∈ Rcx×hy×wy represent the input and the corresponding
output of Lmp, and let x̃ ∈ Rcx·hx·wx and ỹ ∈ Rcx·hy·wy

denote the flattened input and output vectors defined in (3),
respectively. Then,

ỹ = [max(Wmp
1,1,1 · W̃ p · x̃) max(Wmp

1,1,2 · W̃ p · x̃)
· · · max(Wmp

cx,hy,wy
· W̃ p · x̃)]⊤

(5)

where W̃ p ∈ R(cx·(hx+2ph)·(wx+2pw))×(cx·hx·wx) is the
same as that defined in Lemma 1 and Wmp

icx ,ihy ,iwy
∈

R(hp·wp)×(cx·(hx+2ph)·(wx+2pw)) is a zero matrix for icx ∈
[cx], ihy ∈ [hy], iwy ∈ [wy], except for the entries at the
jrow rows and jcol columns, which are equal to 1, i.e.,
(Wmp

icx ,ihy ,iwy
)[jrow,jcol] = 1 where jrow = (ihp

−1) ·wp+

iwp
, jcol = (icx−1)·(hx+2ph)·(wx+2pw)+(iwy

−1)·sw+
iwp

+(ihp
−1)·(wx+2pw)+(ihy

−1)·(wx+2pw)·sh, for any
ihp
∈ [hp], iwp

∈ [wp].
Denote Lmp→fc : Rcx·hx·wx → Rcx·hy·wy as the fully-

connected layer transformed from a max pooling layer in
Lemma 2. Given an input set X ⊂ Rcx·hx·wx in the form of
an HZ, the output set of Lmp→fc can be also represented
as an HZ. Indeed, using (5), the output set of Lmp→fc

can be constructed as Y = max(Wmp
1,1,1 · W̃ p · X) ×

max(Wmp
1,1,2 · W̃ p · X) × · · · ×max(Wmp

cx,hy,wy
· W̃ p · X).

Since HZs are closed under linear mapping [17], we know
(Wmp

icx ,ihy ,iwy
· W̃ p · X) is an HZ for all icx ∈ [cx], ihy

∈
[hy], iwy

∈ [wy]. As each maxout activation function can be
viewed as a piecewise linear function [19], and a piecewise
linear function can be exactly represented as an HZ [16],
Xmax

icx ,ihy ,iwy
≜ max(Wmp

icx ,ihy ,iwy
· W̃ p · X) is also an HZ

for all icx ∈ [cx], ihy ∈ [hy], iwy ∈ [wy]. Therefore, Y can
be computed as the Cartesian product of cx · hy · wy HZs,
which is also an HZ.

For a given CNN πC , the convolution and pooling layers
can be transformed into corresponding fully-connected layers
by using Lemma 1 and Lemma 2. Other layers, such as batch
normalization, can be converted in a similar manner. As a
result, we can construct an FFNN πF that is equivalent to
πC in the sense that πC and πF have the same input-output
mapping. In the next section, we will compute tight over-
approximations of the reachable sets for πC based on πF .

IV. REACHABILITY ANALYSIS OF CNN USING HZ
In this section, we propose a novel approach to efficiently

reduce an FFNN while preserving its input-output relation
with a tunable bounded error. This is followed by the appli-
cation of an HZ-based reachable set computation method for
the reduced network.

A. A Novel Reduction Approach For FFNNs

In [14], it was shown that the input-output relationship
of a ReLU-activated FFNN can be exactly expressed as
an HZ. Consequently, the reachable set of an FFNN can
be represented in closed form by an HZ for a given HZ-
represented input set. However, the complexity of the HZ
representation for the output increases proportionally with
the total number of neurons in the FFNN. To improve the
scalability of the HZ-based method, an effective method for
compressing the FFNN - reducing the number of neurons
while preserving its input-output mapping - is essential.

Consider an ℓ-layer FFNN πF with weight matrices
{W (k)}k∈[ℓ] and bias vectors {v(k)}k∈[ℓ]. Let an HZ Z
be the input set of πF . Denote J (k) ≜ [[α(k),β(k)]] ⊂
Rnk as the interval bound of the ranges of neurons in
the k-th layer of πF , i.e., J (k) ⊇ {x(k) ∈ Rnk |x(i) =
Lfc(W

(i),v(i),x(i−1)), i ∈ [k],x(0) ∈ Z},∀k ∈ [ℓ−1], and
J (ℓ) ⊇ {πF (x) ∈ Rm|x ∈ Z}. The following lemma from

[20, Proposition 4] shows that a reduced FFNN, π̂F , with
fewer neurons can be constructed by adjusting the weights
and bias of the original FFNN, πF , such that π̂F over-
approximates πF in Z .

Lemma 3: For the k-th layer of an FFNN πF , k ∈ [ℓ−1],
given the interval bounds J (k) ⊂ Rnk for the neurons in the
k-th layer and the index set N (k) ⊆ [nk], a reduced network
π̂F is constructed by adjusting the weights and bias of the
k-th and (k + 1)-th layers as follows:

Ŵ (k)=W
(k)

[N (k)
,:]
, b̂(k) = b

(k)

[N (k)
,:]
,

Ŵ (k+1)=W
(k+1)

[:,N (k)
]
, b̂(k+1) = b(k+1) + ε(k+1),

(6)

where N (k)
≜ [nk] \N (k) denotes the index set of remaining

neurons and b̂(k+1) includes the approximation error

ε(k+1) ≜ W
(k+1)

[:,N (k)]
· projN (k)(J (k)). (7)

Then, πF (x) ∈ π̂F (x), ∀x ∈ Z .

Algorithm 1: Determination of Reduced Neurons

Input: Weight matrix W (k+1) ∈ Rnk+1×nk , interval
bounds J (k) = [[α(k),β(k)]] ⊂ Rnk , error bound
ρ ∈ R≥0

Output: Index set of reduced neurons in the k-th layer
N (k)

1 N (k) ← ∅;
2 d(k) ← β(k) −α(k) ; // Interval diameter

3 W⃗ (k+1) ←
∑nk+1

i=1 |W
(k+1)
[i,:] |;

4 h(k+1) ← W⃗ (k+1) ⊙ d(k) ; // Hadamard product
5 for j ∈ {1, 2, . . . , nk} do
6 if h(k+1)

j ≤ ρ then
7 N (k) ← N (k) ∪ {j}; // Append index j

8 return N (k)

The main idea of our FFNN reduction approach is straight-
forward: in the k-th layer, we eliminate neurons that con-
tribute minimally to the (k + 1)-th layer and introduce a
compensatory term to account for the approximation error
caused by this elimination in the (k+1)-th layer, such that the
reduced FFNN over-approximates the original FFNN. Using
Lemma 3, the number of neurons of the k-th layer is reduced
from nk to nk−|N (k)| and the resulting approximation error
is ε(k+1) = [[ε(k+1), ε(k+1)]] ⊂ Rnk+1 represented as an
interval. To minimize error propagation through subsequent
layers of the reduced FFNN, we constrain the size of the error
ε(k+1) defined as size(ε(k+1)) ≜

∑nk+1

i=1 (ε
(k+1)
i − ε

(k+1)
i).

Algorithm 1 summarizes the procedure for identifying the
maximum number of neurons that can be reduced while
controlling the size of the approximation error for each layer.

The following proposition shows that the size of the
approximation error is minimized.

Proposition 1: Given the weight matrix W (k+1) ∈
Rnk+1×nk for the (k + 1)-th layer, the interval bounds
J (k) = [[α(k),β(k)]] ⊂ Rnk for neurons in the k-th layer, and
a scalar ρ ≥ 0, let N (k) be the index set of reduced neurons

determined by Algorithm 1 and ε(k+1) the induced approxi-
mation error as defined in (7). Then, with the same number
of reduced neurons, the size of the error, size(ε(k+1)), is
minimized and satisfies size(ε(k+1)) ≤ ρ · |N (k)|.

Proof: Using the approximation error defined
in (7) and the interval arithmetic, we have
size(ε(k+1)) = size(

∑
j∈N (k) W

(k+1)
[:,j] · J (k)

j) =∑
j∈N (k)(

∑nk+1

i=1 |W
(k+1)
[i,j] | · (β

(k)
j − α

(k)
j)) =∑

j∈N (k) W⃗
(k+1)
j ⊙ d

(k)
j =

∑
j∈N (k) h

(k+1)
j ≤ ρ · |N (k)|

where the last inequality is from h
(k+1)
j ≤ ρ, ∀j ∈ N (k).

Since j̄ ∈ N (k)
implies h

(k+1)

j̄
=

∑nk+1

i=1 |W
(k+1)

[i,j̄]
| · (β(k)

j̄
−

α
(k)

j̄
) > ρ, the value of size(ε(k+1)) is minimized with the

same number of reduced neurons.

B. Over-approximated Reachable Sets for FFNNs and CNNs

By applying Algorithm 1 and Proposition 1 to each layer
of FFNN πF , a reduced FFNN π̂F can be constructed with
weight matrices {Ŵ }k∈[ℓ] and bias {v̂}k∈[ℓ]. To compute
the reachable set of π̂F , we will use the following lemma
from [15, Proposition 2], which states that the graph of the
activation function σ can be over-approximated by an HZ.

Lemma 4: Given an HZ Z ⊂ Rnk , its interval hull
J ≜ [[α,β]] = interval(Z) and a tunable relaxation
parameter 0 ≤ γ ≤ 1, the graph of the activation function
σ : Rnk → Rnk over Z can be over-approximated by the
HZ: Ĝσ(Z) = (P · ĜReLU (J)) ∩[I 0] Z ⊇ Gσ(Z) where
P = [e2 e4 · · · e2nk

e1 e3 · · · e2nk−1]
T ∈ R2nk×2nk is a

permutation matrix and ĜReLU (J) is the same as defined in
[15, Proposition 2] Moreover, when γ = 0, Ĝσ(Z) = Gσ(Z).

Algorithm 2: Over-approximated Reachability Analysis
of FFNN Using HZ

Input: HZ set Z , FFNN πF with weight matrices
{W (k)}ℓk=1 and bias vectors {v(k)}ℓk=1, error
bound ρ ≥ 0, HZ relaxation parameter 0 ≤ γ ≤ 1

Output: Over-approximated reachable set R̂πF
as an HZ

1 X (0) ← Z; Ŵ (1) ← W (1); v̂(1) ← v(1);
2 for k ∈ {1, 2, . . . , ℓ− 1} do
3 Z(k) ← Ŵ (k)X (k−1)+v̂(k);
4 J (k)

z = [[α(k),β(k)]]← CROWN(Z(k));
5 J (k)

x ←σ(J (k)
z);

6 N (k) ← Algorithm 1 with W (k+1), J (k)
x and ρ;

7 Ŵ (k), v̂(k), Ŵ (k+1), v̂(k+1) ← (6) in Lemma 3;
8 Ẑ(k) ← projN (k)(Z(k)); Ĵ (k)

z ← projN (k)(J (k)
z);

9 Ĝ(k) ← (P · ĜReLU (Ĵ (k)
z)) ∩[I 0] Ẑ(k);

10 X (k) ← [0 I] · Ĝ(k);

11 return R̂πF
← Ŵ (ℓ)X (ℓ−1) + v̂(ℓ)

To construct an HZ over-approximation of the reachable
set for πF , we propagate the input set through the reduced
FNN π̂F layer by layer using Lemma 4 and linear map
operations on HZs. The detailed procedure is summarized
in Algorithm 2, which is adapted from [15, Algorithm 2].
Notably, in Line 5, we use CROWN [7], [21] with GPU-

accelerated computation to efficiently approximate the inter-
val bounds for each layer in the reduced FFNN. Compared
with our previous method in [15], which computes an exact
interval hull of an HZ by solving a set of MILPs for each
layer, using CROWN significantly enhances the scalability
of the proposed method without substantially impacting the
accuracy of the HZ-represented reachable set.

The following theorem shows that the reachable set over-
approximation in Algorithm 2 is sound.

Theorem 1: Given an ℓ-layer ReLU-activated FNN πF :
Rn → Rm and an HZ Z ⊂ Rn, the output of Algorithm 2,
R̂πF

, is an HZ that over-approximates the exact reachable set
of πF over Z , i.e., R̂πF

⊇ RπF
(Z). Furthermore, R̂πF

=
RπF

(Z) when ρ = 0 and γ = 0.
Proof: A reduced FFNN π̂F is constructed using (6) in

Line 8 of Algorithm 2. In Line 9-12, the over-approximated
input set Ẑ(k), graph Ĝ(k) and output set X (k) of the k-th
layer of the reduced FFNN is computed iteratively for k ∈
[ℓ−1]. Thus, the over-approximation properties are preserved
through the propagation of each hidden layer. Only a linear
map is applied to the last layer in Line 13. As π̂F over-
approximates πF over Z , R̂πF

⊇ Rπ̂F
(Z) ⊇ RπF

(Z).
Since Z is an HZ and HZs are closed under all the set
operations involved in Algorithm 2, R̂πF

is also an HZ by
construction. When ρ = γ = 0, π̂F preserves the same
input-output relationship of πF as shown in Lemma 3, and
the constructed graph set in Line 11 is exact for each layer
by Lemma 4. Thus, R̂πF

= RπF
(Z).

Finally, for a given CNN πC , its over-approximated reach-
able set can be computed by directly applying Theorem 1 to
the FFNN πF that is constructed in Section III and equivalent
to πC , as shown in the following result.

Corollary 1: Given a CNN πC : RcI×hI×wI → Rm with
an input set I ⊂ RcI×hI×wI , let πF : RcI ·hI ·wI → Rm be
the FFNN transformed from πC using Lemma 1 - Lemma
2, and denote R̂πF

as the result by applying Algorithm 2 to
πF , then R̂πF

⊇ RπC
(I). Moreover, when ρ = γ = 0 in

Algorithm 2, R̂πF
= RπC

(I).

V. SIMULATION RESULTS

Two simulation examples are provided to demonstrate the
effectiveness of the proposed method. The implementation
was carried out in Python and executed on a desktop with
an Intel Core i5-11400F CPU and 32GB of RAM.

A. Robustness Verification of MNIST CNN

In the first example, we use two CNNs from the ERAN
benchmark in [22], trained on the MNIST dataset, which
consists of 60,000 images of handwritten digits with a
resolution of 1 × 28 × 28 pixels. Each pixel has a value
from 1 to 255. Based on the architectures of the CNNs,
they are referred to as the small and large MNIST CNNs:
πC,small,πC,large : R1×28×28 → R10. The CNNs classify the
digit images into ten classes: 0, 1, . . . , 9, and the classified
output corresponds to the index of the maximum value
among the 10 output dimensions.

Robustness results (%) Average runtimes (s)
Ours α-CROWN Ours α-CROWN

d=245
δ=0.01

86.2 86.2 0.514 0.259

d=230
δ=0.015

80.9 80.9 0.706 0.343

d=200
δ=0.05

69.2 67.9 1.751 0.592

TABLE I: Robustness verification results for the small
MNIST CNN on 1000 randomly perturbed image input.

Robustness results (%) Average runtimes (s)
Ours α-CROWN Ours α-CROWN

d=245
δ=0.01

86.5 86.5 0.809 0.319

d=230
δ=0.015

80.5 80.4 1.420 0.412

d=200
δ=0.05

68.8 66.7 3.604 0.655

TABLE II: Robustness verification results for the large
MNIST CNN on 1000 randomly perturbed image input.

To evaluate the robustness of the MNIST CNNs, we
apply a brightening attack [23], which darkens parts of the
input images. Similar to the approach in [10], the perturbed
input images are constructed by adjusting pixels with values
greater than a threshold d into an interval range [[0, 255×δ]],
where δ ≥ 0 determines the size of the perturbation. Mathe-
matically, given an image I ∈ R1×28×28, the perturbed input
image is represented as an interval I ≜ [[I, I]] ⊂ R1×28×28,
where I [1,i,j] = 0 and I [1,i,j] = 255 × δ if I[1,i,j] ≥ d, and
I [1,i,j] = I [1,i,j] = I[1,i,j] otherwise, for i, j = 1, 2, . . . , 28.

We randomly select 1000 images from the MNIST dataset
and construct 1000 corresponding perturbed input sets based
on the threshold d and perturbation radius δ. Algorithm 2
and Corollary 1 are then applied to compute the reachable
sets for both CNNs. A CNN is considered robust against the
brightening attack if the correctly classified output consis-
tently maintains the maximum value across all other outputs
within the computed reachable set. For comparison, we
also use α-CROWN [24] with default settings to verify the
robustness of the two MNIST CNNs. The success rates for
robustness verification and the average computation times
for each method are summarized in Table I and Table II. An
example of the output ranges for the small MNIST CNN
is illustrated in Figure 1. The results show that the pro-
posed method is less conservative and achieves an equal or
higher verification success rate with comparable computation
time. Notably, α-CROWN represents CNN reachable sets
as intervals, whereas our proposed method represent them
as HZs, a more general and expressive set representation.
Although α-CROWN achieves shorter computation times,
our HZ-represented reachable sets offer greater accuracy than
interval-based reachability by yielding smaller set volumes.
This improvement enhances verification accuracy, particu-
larly in the presence of large disturbances.

B. Robustness Verification of CIFAR-10 CNN

In the second example, we use a CNN trained on the
CIFAR-10 colored image dataset from the benchmark in
[22]. The CNN consists of four convolutional layers with

(a) This work (b) α-CROWN [24]
Fig. 1: An example of output ranges of the small MNIST
CNN with d = 200 and δ = 0.05.

Number of neurons
Layer 1 2 3 4 5 6

Original CNN 32768 8192 16384 4096 512 512
Reduced CNN

with δ = 0.001
2613 251 115 176 56 84

Reduced CNN
with δ = 0.01

2752 513 114 113 51 269

TABLE III: Neuron reduction results for CIFAR-10 CNN.

up to 32768 neurons per layer and two fully-connected
layers. Similar to the MNIST CNNs, the CIFAR-10 CNN
classifies the input image I ∈ R3×32×32 into ten categories.
We assume each pixel of the image inputs is perturbed by
a radius δ ∈ {0.001, 0.01}. Using the method developed
in Section III, the CIFAR-10 CNN is transformed into an
equivalent FFNN. To enhance the efficiency of reachable
set computation, Algorithm 1 is employed to determine the
neurons to be reduced during the reachable set computation
in Algorithm 2. Table III summarizes the number of neurons
in each layer of the original CIFAR-10 CNN and the reduced
network using Algorithm 1. Our neuron reduction approach
achieves a 90 % reduction in each layer of the transformed
FFNN, significantly simplifying the subsequent reachability
analysis. The average computation time for neuron reduction
and reachable set calculation is 3.19 seconds.

VI. CONCLUSION

In this work, we proposed an efficient HZ-based approach
for computing the reachable sets of CNNs. By expressing
the convolution and pooling operations as linear mappings,
we demonstrated that a CNN can be transformed into an
equivalent FFNN. To enhance the efficiency of reachability
analysis for the converted FFNN, we developed a flexible
neural network reduction method that allows for closed-form
over-approximations of the CNN’s reachable sets in the form
of HZs. The performance of the proposed approach was
evaluated using two numerical examples.

REFERENCES

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” in Proceedings of the 3rd International
Conference on Learning Representations, 2015.

[2] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 5, pp. 828–841, 2019.

[3] M. Everett, G. Habibi, C. Sun, and J. P. How, “Reachability analysis
of neural feedback loops,” IEEE Access, vol. 9, pp. 163 938–163 953,
2021.

[4] Y. Zhang and X. Xu, “Safety verification of neural feedback systems
based on constrained zonotopes,” in IEEE Conference on Decision and
Control, 2022, pp. 2737–2744.

[5] N. Rober, S. M. Katz, C. Sidrane, E. Yel, M. Everett, M. J. Kochen-
derfer, and J. P. How, “Backward reachability analysis of neural
feedback loops: Techniques for linear and nonlinear systems,” IEEE
Open Journal of Control Systems, pp. 108–124, 2023.

[6] Y. Zhang, H. Zhang, and X. Xu, “Backward reachability analysis
of neural feedback systems using hybrid zonotopes,” IEEE Control
Systems Letters, vol. 7, pp. 2779–2784, 2023.

[7] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel,
“Efficient neural network robustness certification with general activa-
tion functions,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

[8] X. Yang, T. Yamaguchi, H.-D. Tran, B. Hoxha, T. T. Johnson,
and D. Prokhorov, “Reachability analysis of convolutional neural
networks,” arXiv preprint arXiv:2106.12074, 2021.

[9] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim,
P. Shah, S. Thakoor, H. Wu, A. Zeljić et al., “The Marabou frame-
work for verification and analysis of deep neural networks,” in 31st
International Conference on Computer Aided Verification. Springer,
2019, pp. 443–452.

[10] H.-D. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification of
deep convolutional neural networks using imagestars,” in International
Conference on Computer Aided Verification. Springer, 2020, pp. 18–
42.

[11] U. Santa Cruz and Y. Shoukry, “NNLander-VeriF: A neural network
formal verification framework for vision-based autonomous aircraft
landing,” in NASA Formal Methods Symposium. Springer, 2022, pp.
213–230.

[12] S. M. Katz, A. L. Corso, C. A. Strong, and M. J. Kochenderfer, “Ver-
ification of image-based neural network controllers using generative
models,” Journal of Aerospace Information Systems, vol. 19, no. 9,
pp. 574–584, 2022.

[13] C. Hsieh, Y. Li, D. Sun, K. Joshi, S. Misailovic, and S. Mitra,
“Verifying controllers with vision-based perception using safe approx-
imate abstractions,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 11, pp. 4205–4216, 2022.

[14] Y. Zhang and X. Xu, “Reachability analysis and safety verification of
neural feedback systems via hybrid zonotopes,” in American Control
Conference. IEEE, 2023, pp. 1915–1921.

[15] Y. Zhang, H. Zhang, and X. Xu, “Reachability analysis of neural
network control systems with tunable accuracy and efficiency,” IEEE
Control Systems Letters, vol. 8, pp. 1697–1702, 2024.

[16] H. Zhang, Y. Zhang, and X. Xu, “Hybrid zonotope-based backward
reachability analysis for neural feedback systems with nonlinear plant
models,” in American Control Conference. IEEE, 2024, pp. 4155–
4161.

[17] T. J. Bird, H. C. Pangborn, N. Jain, and J. P. Koeln, “Hybrid zonotopes:
A new set representation for reachability analysis of mixed logical
dynamical systems,” Automatica, vol. 154, p. 111107, 2023.

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[19] I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Ben-
gio, “Maxout networks,” in International Conference on Machine
Learning. PMLR, 2013, pp. 1319–1327.

[20] T. Ladner and M. Althoff, “Fully automatic neural network reduction
for formal verification,” arXiv preprint arXiv:2305.01932, 2023.

[21] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z.
Kolter, “Beta-CROWN: Efficient bound propagation with per-neuron
split constraints for neural network robustness verification,” Advances
in Neural Information Processing Systems, vol. 34, pp. 29 909–29 921,
2021.

[22] S. Bak, C. Liu, and T. Johnson, “The second international verification
of neural networks competition (VNN-COMP 2021): Summary and
results,” arXiv preprint arXiv:2109.00498, 2021.

[23] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri,
and M. Vechev, “Ai2: Safety and robustness certification of neural
networks with abstract interpretation,” in IEEE Symposium on Security
and Privacy, 2018, pp. 3–18.

[24] K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, and C.-J. Hsieh,
“Fast and complete: Enabling complete neural network verification
with rapid and massively parallel incomplete verifiers,” arXiv preprint
arXiv:2011.13824, 2020.

http://www.deeplearningbook.org

	Introduction
	Preliminaries & Problem Statement
	Transformation From CNN Into FFNN
	Convolution Layer
	Max Pooling Layer

	Reachability Analysis of CNN Using HZ
	A Novel Reduction Approach For FFNNs
	Over-approximated Reachable Sets for FFNNs and CNNs

	Simulation Results
	Robustness Verification of MNIST CNN
	Robustness Verification of CIFAR-10 CNN

	Conclusion
	References

