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Abstract— Hybrid zonotopes generalize constrained zono-
topes by introducing additional binary variables and possess
some unique properties that make them convenient to represent
nonconvex sets. This paper presents novel hybrid zonotope-
based methods for the reachability analysis and safety verifi-
cation of neural feedback systems. Algorithms are proposed to
compute the input-output relationship of each layer of a feed-
forward neural network, as well as the exact reachable sets
of neural feedback systems. It is shown that a ReLU-activated
feed-forward neural network can be exactly represented by
a hybrid zonotope. In addition, a sufficient and necessary
condition is formulated as a mixed-integer linear program to
certify whether the trajectories of a neural feedback system can
avoid unsafe regions. The proposed approach is shown to yield a
formulation that provides the tightest convex relaxation for the
reachable sets of the neural feedback system. Complexity reduc-
tion techniques for the reachable sets are developed to balance
the computation efficiency and approximation accuracy. Two
numerical examples demonstrate the superior performance of
the proposed approach compared to other existing methods.

I. INTRODUCTION

Artificial neural networks have shown their extraordinary
performance in many fields such as auto-driving systems [1]
and mobile robots [2]. Implementation of neural networks in
such controlled systems also raises safety concerns as even a
small chance of failure may cause catastrophic consequences.
Therefore, it is critical to find an efficient method to verify
the safety properties of controlled systems with neural net-
work components before real implementations. However, an-
alyzing properties of neural networks is notoriously difficult
due to their highly non-convex and nonlinear natures [3].

Various methods have been proposed to perform reacha-
bility analysis and safety verification for the neural feedback
systems (i.e., feedback systems with neural network con-
trollers) [4], [5], [6], [7], [8]. Based on quadratic constraints,
a reachable set over-approximation method was proposed
in [9], [10] using Semi-Definite Programming (SDP). A
fast reachability method was introduced in [11] by relaxing
the SDP into Linear Programming (LP). Learning-based
reachability methods were also developed in [12], [13] for
neural feedback systems with probabilistic guarantees on
the correctness of the approximated reachable sets. Set-
based methods were also proposed to compute the exact
reachable sets of neural feedback systems using star sets
[14] and constrained zonotopes [15]. Despite their interesting
results, these two methods can only deal with convex set
representations which limit their usage for complex safety
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Fig. 1: The neural feedback system is given as x(t+ 1) =
Adx(t)+Bdu(t) where the state feedback controller u(t) =
π(x(t)) is a given ℓ-layer FNN with the ReLU activation
function. At each time step, the neural feedback system maps
a hybrid zonotope as the input set to another hybrid zonotope
as the output set. The initial set is X0 and the reachable set
at time t from X0 is Rt(X0).

verification problems. Besides, the computation complexity
increases rapidly for deep neural networks.

Recently, a new set representation named the hybrid
zonotope was introduced in [16]. Through the addition of
binary generators, hybrid zonotope can represent non-convex
sets with flat faces. And the reachability analysis based on
hybrid zonotopes will lead to the formulation of Mixed-
Integer Linear Programs (MILPs), for which many state-of-
the-art solvers such as Gurobi [17] and learning-based solver
MLOPT [18] can be utilized to accelerate the computation.

In this work, we present hybrid zonotope-based methods
for reachability analysis and safety verification of neural
feedback systems with ReLU-activated Feed-forward Neural
Network (FNN) controllers (see Figure 1). The contributions
of this paper are fourfold: (i) Through analytical analysis, it
is shown that a FNN with ReLU activation functions can
be exactly represented by a hybrid zonotope; (ii) For neural
feedback systems with hybrid zonotopes as the input sets, a
novel approach is presented to compute the nonconvex exact
reachable sets represented as hybrid zonotopes; (iii) Based
on the convex relaxation property of the computed reach-
able sets and the properties of hybrid zonotopes, heuristic
reduction methods are proposed to reduce the complexity
growth of the hybrid zonotope sets; (iv) Using the computed
reachable sets, an MILP-based condition is provided to verify
the unsafe region avoidance of neural feedback systems, for
which off-the-shelf solvers can be employed. The efficiency
of the proposed methods is demonstrated through two nu-
merical examples.

II. PRELIMINARIES & PROBLEM STATEMENT

A. Hybrid Zonotopes

Definition 1: Let Z,Zc,Zh ⊂ Rn. Z is a zonotope if (1)
holds [19], Zc is a constrained zonotope if (2) holds [20],



and Zh is a hybrid zonotope if (3) holds [16]:

∃(G, c) ∈ Rn×ng × Rn :Z = {Gξ + c | ∥ξ∥∞ ≤ 1} , (1)
∃(G, c,A,b) ∈ Rn×ng × Rn × Rnc×ng × Rnc :

Zc = {Gξ + c | ∥ξ∥∞ ≤ 1,Aξ = b} , (2)

∃(Gc,Gb, c,Ac,Ab,b) ∈ Rn×ng×Rn×nb×Rn×Rnc×ng

× Rnc×nb × Rnc : (3)

Zh=


[
Gc Gb

] [ξc
ξb

]
+ c

∣∣∣∣∣∣∣∣
[
ξc

ξb

]
∈ Bng

∞ × {−1, 1}nb ,[
Ac Ab

] [ξc
ξb

]
= b

 ,

where Bng
∞ = {x ∈ Rng | ∥x∥∞ ≤ 1} is the unit hypercube

in Rng . The shorthand notations of the zonotope, constrained
zonotope and hybrid zonotope are given by Z = Z⟨G, c⟩,
Zc = CZ⟨G, c,A,b⟩, and Zh = HZ⟨Gc,Gb, c,Ac,Ab,
b⟩, respectively.

Note that a hybrid zonotope degenerates into a con-
strained zonotope when nb = 0, and a constrained zono-
tope degenerates into a zonotope when nc = 0. A hybrid
zonotope with nb > 0 is equivalent to the union of 2nb

corresponding constrained zonotopes [16, Theorem 5]. For
a given hybrid zonotope, the vector c is called the center,
the columns of Gb are called the binary generators, and
the columns of Gc are called the continuous generators (or
simply generators if binary generators are not present). For
simplicity, we define the set B(Ac,Ab,b) = {(ξc, ξb) ∈
Bng
∞ × {−1, 1}nb | Acξc + Abξb = b}. We denote G[:, i]

as the i-th column of a matrix G. The complexity of a
hybrid zonotope is described by its degrees-of-freedom order
or simply order oh = (ng + nb − nc)/n.

Identities to compute the linear map, intersection and
union operation of hybrid zonotopes are given in [16, Propo-
sition 7] and [21, Proposition 1]. The emptiness of a hybrid
zonotope can be checked by solving an MILP [16].

Lemma 1: Given Zh = HZ⟨Gc,Gb, c,Ac,Ab,b⟩ ⊂
Rn, Zh ̸= ∅ if and only if min{∥ξc∥∞ | Acξc + Abξb =
b, ξc ∈ Rng , ξb ∈ {−1, 1}nb} ≤ 1.

B. Problem Statement

Consider a discrete-time linear system:

x(t+ 1) = Adx(t) +Bdu(t) (4)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and the control
input. Ad ∈ Rn×n, Bd ∈ Rn×m are the state matrix and the
input matrix, respectively.

We assume a state-feedback controller u(t) = π(x(t)),
which is parameterized by an ℓ-layer FNN with the Rectified
Linear Unit (ReLU) activation function. The closed-loop
system is denoted as:

x(t+ 1) = fcl(x(t)) ≜ Adx(t) +Bdπ(x(t)). (5)

For the closed-loop system (5), we denote Rt(X0) ≜
{x(t) ∈ Rn|x(0) ∈ X0,x(k + 1) = fcl(x(k)), k =
0, 1, . . . , t − 1} the (forward) reachable set at time t from
a given set of initial conditions X0 ⊂ Rn.

For the ℓ-layer FNN controller, let W(k−1) be the k-th
layer weight matrix and v(k−1) be the k-th layer bias vector,
for k = 1, . . . , ℓ. Denote x(k) as the neurons of the k-th
layer, then, for k = 1, . . . , ℓ− 1, we have

x(k) = ReLU(W(k−1)x(k−1) + v(k−1)) (6)

where x(0) = x(t) and ReLU(x) = max{0,x}. Only the
linear map is applied in the last layer, i.e., π(x(t)) = x(ℓ) =
W(ℓ−1)x(ℓ−1) + v(ℓ−1).

We assume the initial set and the unsafe set for the closed-
loop system (7) are both represented by hybrid zonotopes. In
this paper, we will investigate the following two problems.

Problem 1: (Reachability analysis) Given an initial set X0

that is represented as a hybrid zonotope, the parameters of the
FNN controller π and a time horizon T ∈ Z>0, compute the
reachable set Rt(X0) for the closed-loop system (5) where
t = 1, . . . , T .

Problem 2: (Safety verification) Given unsafe set O rep-
resented by a hybrid zonotope, verify whether the state
trajectories of the closed-loop system (5) can avoid the
unsafe region for t = 1, . . . , T .

III. EXACT REACHABILITY ANALYSIS AND SAFETY
VERIFICATION

In this section, we consider Problem 1 and Problem 2 for
the closed-loop system with an FNN controller as in (5).

A. Output Analysis of Standalone FNN

Firstly, we will present an algorithm to compute the exact
output set of a given FNN as in (6) with an input set
represented as a hybrid zonotope.

From the definition of the FNN in (6), the output of layer
k is the input of layer k+1, for k = 1, . . . , ℓ−1. Therefore,
the output set of an FNN can be derived layer by layer and
we will focus on finding the input-output relationship for one
layer. Using Proposition 7 in [16], we can pass an input set as
a hybrid zonotope Zh = HZ⟨Gc,Gb, c,Ac,Ab,b⟩ through
a linear map as WZh + v = HZ⟨WGc,WGb,Wc +
v,Ac,Ab,b⟩. Thus, the only difficulty remaining is to find
the output of a ReLU activation function for a hybrid
zonotope.

Inspired by the output analysis algorithm for FNN using
the star sets representation in [22], we present Algorithm 1
to compute the exact output set for one layer of FNN using
hybrid zonotopes. Given the weight matrix W(k−1) and bias
vector b(k−1) for the k-th layer (k = 1, . . . , ℓ − 1), Line 2
computes the linear map of the input set Zh. Recall that x(k)

denotes the neurons of the k-th layer. Based on the definition,
we know the ReLU activation function will only change
the value of a neuron if it is negative. Thus, Line 3-4 of
Algorithm 1 is used to compute the range of each neuron and
identify the neurons with lower-bound in the negative half-
space. Then, StepReLU function in Algorithm 1 applies the
ReLU activation function on each of the identified neurons.
Note that in Line 13-14, Hi

− = {x ∈ Rn | eTi x ≤ 0}
and Hi

+ = {x ∈ Rn | eTi x ≥ 0} denote the half-spaces
with i-th canonical vector ei, for i = 1, . . . , n. Algorithm



1 reveals that when the input set Zh to the FNN π is a
hybrid zonotope, the exact output of the FNN can also be
represented as a hybrid zonotope.

Algorithm 1: Exact output analysis for k-th layer of
FNN via hybrid zonotopes

Input: weight matrix W(k−1), bias vector v(k−1),
hybrid zonotope input sets Zh

Output: exact output set R as a hybrid zonotope
1 Function R = ReachNN(Zh,W(k−1),v(k−1)):
2 R = W(k−1)Zh + v(k−1) ; // linear map
3 [lb up]← range of x(k) in I ; // MILP
4 map = find(lb < 0) ;
5 for i in map do
6 R = StepReLU(R, i, lb[i], up[i]) ;

7 return R
8 Function R̃ = StepReLU(R,i,lbi,upi):
9 Ei = [e1 · · · ei−1 0 ei+1 · · · enI

] ;
10 if upi ≤ 0 then
11 I = EiR ; // linear map

12 if lbi < 0 & upi > 0 then
13 I+ = R∩Hi

+ ; I− = R∩Hi
− ;

14 I = I+ ∪EiI− ;

15 return R̃ = I

Algorithm 2: Compute G1,G2 in Theorem 1
Input: continuous generator matrix Gc ∈ Rn×ng and

binary generator matrix Gb ∈ Rn×nb from
hybrid zonotope Zh, nπ

b - the number of
binary generators of Zπ

h

Output: matrices G1,G2

1 G1 ←− Gc; G2 ←− Gb;
2 k ←− log2(n

π
b + 1)− log2(nb + 1);

3 repeat
4 G1 ←− [G1 0n×1];
5 G1 ←− [G1 G1]; G2 ←− [G2 G2];
6 m←− 2∗(# columns of G1+# columns of G2);
7 G1 ←− [G1 0n×m]; G2 ←− [G2 0n×1];
8 k ←− k − 1;
9 until k ≤ 0;

10 return G1,G2

B. Exact Reachable Set for Neural Feedback System

Next, we consider the reachability analysis for the closed-
loop system (5). Recall that fcl(x) = Adx+Bdπ(x). Note
that a conservative over-approximation of the exact reachable
set can be obtained by trivially adding the two terms of fcl

with the Minkowski sum. The following theorem provides
the exact form of fcl(Zh) = {fcl(x)|x ∈ Zh} for a given
hybrid zonotope Zh.

Theorem 1: Given any hybrid zonotope Zh = HZ⟨Gc,
Gb, c,Ac,Ab,b⟩ ⊂ Rn where Gc ∈ Rn×ng , Gb ∈ Rn×nb ,
Ac ∈ Rnc×ng and Ab ∈ Rnc×nb , let π(Zh) = HZ⟨Gc

π,G
b
π,

cπ,A
c
π,A

b
π,bπ⟩ ≜ Zπ

h be the computed output set using
Algorithm 1. Then, fcl(Zh) = HZ⟨Gc

cl,G
b
cl, ccl,A

c
cl,A

b
cl,

bcl⟩ ≜ Zcl
h , where

Gc
cl = AdG1 +BdG

c
π, G

b
cl = AdG2 +BdG

b
π,

ccl = Ad(c+ (
nπ
b + 1

nb + 1
− 1)Gb1) +Bdcπ,

Ac
cl = Ac

π, A
b
cl = Ab

π, bcl = bπ,

matrices G1 and G2 are given by Algorithm 2, nb and nπ
b are

the numbers of binary generators of Zh and Zπ
h , respectively.

The detailed proof of Theorem 1 is omitted due to space
limitation and can be found in [23]. Note that the construc-
tion of matrices G1 and G2 is used to preserve the mapping
implied by the closed-loop system (5).

Based on Theorem 1, the exact reachable sets of closed-
loop system (5) can be computed as follows:

R0 = X0, Rt = fcl(Rt−1), t = 1, . . . , T. (7)

The reachable sets computed by (7) are exact as long as the
initial set can be represented by a hybrid zonotope. The price
of accuracy, however, is that the complexity order (i.e., the
numbers of continuous and binary generators - ng and nb) of
the hybrid zonotope reachable sets will grow exponentially.
If nπ is the total number of neurons in π, then, in the worst
case, nb will increase in the order of 2nπ − 1 and ng will
increase in the order of 4nπ −1. Thus, complexity reduction
techniques are needed to reduce the computation burden,
which will be introduced in the next section.

Remark 1: In our prior work [15], a method based on
constrained zonotopes was proposed to compute exact reach-
able sets of neural feedback systems. Different from the exact
reachability analysis in this section, the input set considered
in [15] is limited to a single constrained zonotope, which is
unable to represent non-convex sets as the hybrid zonotope
does. Although one may convert the unions of constrained
zonotopes into hybrid zonotopes using Proposition 1 in [21],
this will result in a set with a larger complexity order as it
will take much more union operations than Algorithm 1 of
this work. Numerical comparisons of these two methods will
be demonstrated by examples in Section V.

Remark 2: Although only linear feedback systems are
considered in this work, the proposed approach can be
readily extended to general nonlinear feedback systems by
abstracting nonlinear dynamics with a set of optimally tight
piecewise linear bounds as in [24].

C. Safety Verification

Denote the exact reachable set from initial set X0 at time t
computed by (7) be Rt(X0) = HZ⟨Gc

t ,G
b
t , ct,A

c
t ,A

b
t ,bt⟩

for t = 1, . . . , T . Assume the unsafe region is represented by
a hybrid zonotope O = HZ⟨Gc

o,G
b
o, co,A

c
o,A

b
o,bo⟩. The

following result provides a sufficient and necessary condition
on the safety verification of the closed-loop system (5).



Proposition 1: Given the reachable sets R1, . . . ,RT and
unsafe set O defined above, the state trajectories of the
closed-loop system (5) will not enter the unsafe region if and
only if the following condition is satisfied for t ∈ {1, . . . , T}:

min

∥ξc∥∞
∣∣∣∣∣∣
Ac

t 0
0 Ac

o

Gc
t −Gc

o

 ξc +

Ab
t 0

0 Ab
o

Gb
t −Gb

o

 ξb

=

 bt

bo

co − ct

 , ξc ∈ Rng,t , ξb ∈ {−1, 1}nb,t

 > 1. (8)

Avoiding unsafe regions can be equivalently expressed as
none of the reachable sets intersect with the unsafe set. Since
Proposition 1 is a straight-forward application of Proposition
7 in [16] and Lemma 1, the proof is omitted due to space
limitation.

Remark 3: The safety verification problem is formulated
as T MILPs (8) with ng,t continuous variables and nb,t

binary variables. Although MILPs are well known to be
NP-hard problems in general, some common commercial
MILP solvers such as Gurobi [17] have shown promising
performance in both average solving time and wide ranges
of solvable problems. The fast development of these MILP
solvers enables us to incorporate these off-the-shelf tools into
our verification problem.

IV. COMPLEXITY REDUCTION

Due to the intersection and union operation in Algorithm
1, both the number of continuous generators and the number
of binary generators will increase fast. As mentioned in
Section III-B, in the worst case, these two numbers will
grow exponentially which makes Theorem 1 computationally
heavy. In this section, we will introduce two order reduction
techniques that can provide over-approximated reachable sets
with fewer continuous and binary generators.

A. Reducing the Number of Binary Generators

Given a hybrid zonotope, it is possible that the set can be
represented by another hybrid zonotope with fewer binary
generators. A rigorous approach is proposed in [16] to
remove the redundant binary generators by exploring the
independent feasible solutions for the binary variable ξb.
Although this approach can reduce the complexity of the
hybrid zonotope representation, one major limitation is that
it can not further reduce the binary generators without
altering the set. In this subsection, however, we explore the
relationship between the union and convex hull operations
of hybrid zonotopes, and provide a novel method to reduce
the number of binary generators while guaranteeing an over-
approximation.

Let’s first consider two constrained zonotopes Zc =
CZ⟨Gz, cz,Az,bz⟩ ⊂ Rn and Wc = CZ⟨Gw, cw,Aw,
bw⟩ ⊂ Rn.

For any set X ⊂ Rn, we denote the convex hull of X
as conv(X ) [25]. According to Theorem 5 in [26], we can
compute the convex hull of Z∪W as a constrained zonotope

Cc = conv(Zc ∪Wc) = CZ⟨Gco, cco,Aco,bco⟩ where

Gco =
[
Gz Gw

cz−cw

2 0
]
, cco =

cz + cw
2

, (9)

Aco =

 Az 0 −bz

2 0

0 Aw
bw

2 0
A3,1 A3,2 A3,1 I

 , bco =

 1
2bz
1
2bw

− 1
21

 , (10)

A3,1 =


I
−I
0
0

 ,A3,2 =


0
0
I
−I

 , A3,0 =


− 1

21
− 1

21
1
21
1
21

 . (11)

According to Proposition 1 in [21], we can compute the
union of Zc and Wc as a hybrid zonotope: Uh = Zc∪Wc =
HZ⟨Gc

u,G
b
u, cu,A

c
u,A

b
u,bu⟩ where

Gc
u=

[
Gz Gw 0

]
,Gb

u=
cz − cw

2
, cu =

cz + cw
2

, (12)

Ac
u=

Az 0 0
0 Aw 0
Ac

3 I

 ,Ab
u=

−bz

2
bw

2
Ab

3

 ,bu=

 bz

2
bw

2
b3

 , (13)

Ac
3=


I 0
−I 0
0 I
0 −I

 ,Ab
3=


0 0 −1

2 1
0 0 −1

2 1
0 0 1

21
0 0 1

21

 ,b3=


−1
2 1
−1
2 1
−1
2 1
−1
2 1

. (14)

The relationship between the union and convex hull of two
constrained zonotopes is summarized below.

Lemma 2: Consider two constrained zonotopes Zc,Wc ⊂
Rn, and let Uh = Zc ∪Wc be a hybrid zonotope computed
as in (12)-(14) and Cc = conv(Zc ∪ Wc) be a constrained
zonotope computed as in (9)-(11). If the binary variable
constraint in Uh is relaxed to continuous variable constraint,
i.e., replace ξb ∈ {−1, 1} with ξb ∈ [−1, 1], to get a relaxed
constrained zonotope Uc, then Uc is equivalent to Cc.

Proof: It is easy to check that Gco = [Gz Gw Gb
u 0]

and Aco =

Az 0 −bz

2 0

0 Aw
bw

2 0
Ac

3 b3 I

. Therefore, we have

Cc = CZ⟨Gco, cco,Aco,bco⟩ = CZ⟨
[
Gc

u Gb
u

]
, cu,[

Ac
u Ab

u

]
,b⟩ = Uc.

The following theorem extends Lemma 2 to the reachable
sets computed by (7).

Theorem 2: Given any hybrid zonotope Zh = ⟨Gc,
Gb, c,Ac,Ab,b⟩ from the reachable set computation (7),
the convex hull of Zh can be constructed as the con-
strained zonotope Zc = CZ⟨

[
Gc Gb

]
, c,

[
Ac Ab

]
,b⟩,

i.e., Zc = conv(Zh).
Proof: Using Theorem 5 in [16], we know that Zh

can be represented by the union of a finite number of
constrained zonotopes. Without loss of generality, assume
Zh = Zc,1 ∪ Zc,2 ∪ · · · ∪ Zc,N with Zc,i, , i = 1, . . . , N
being constrained zonotopes. It can be observed that using
Lemma 2, we can eliminate one binary variable each time by
replacing the union of two constrained zonotopes with their
convex hull. Based on properties of convex hull, by repeating
the same procedure for N − 1 times, we can get Zc =
CZ⟨

[
Gc Gb

]
, c,

[
Ac Ab

]
,b⟩ = conv(· · · conv(Zc,1 ∪

Zc,2) · · · ∪ Zc,N ) = conv(Zh).



Remark 4: Note that Theorem 2 is not true for an arbi-
trary hybrid zonotope. Although for any hybrid zonotope,
relaxing the binary constraints into linear constraints leads
to an over-approximation of the hybrid zonotope, it is not
guaranteed to be the tightest convex relaxation. However,
Theorem 2 shows that our reachable set formulation com-
puted by (7) can provide the tightest convex relaxation
of the neural feedback systems with ReLU-activated FNN
controllers. This property is similar to the ideal formulation
for MILPs in [27].

Using Theorem 2, we can reduce the desired number
of binary generators of a hybrid zonotope by replacing
them with the same number of continuous generators. For
example, given a hybrid zonotope Zh with ng continuous
generators and nb binary generators, we can reduce n̂b binary
generators and get an over-approximated hybrid zonotope
Ẑh with ng + n̂b continuous generators and nb − n̂b binary
generators. When n̂b = nb, Ẑh becomes a constrained
zonotope which is also the convex hull of Zh.

B. Reducing the Number of Continuous Generators
In this subsection, we introduce two methods to reduce the

number of continuous generators. For a zonotope, generator
reduction can be done by identifying parallel generators
and combining parallel generators through addition [28].
The same approach can be applied to a constrained zono-
tope Zc = CZ⟨G, c,A,b⟩ if the lifted zonotope Z+ =

Z⟨
[
G
A

]
,

[
c
b

]
⟩ ≜ Z⟨G+, c+⟩ has parallel generators G+[:

, i] || G+[:, j] [20].
This lift-then-reduce strategy can also be extended to

hybrid zonotopes. The following proposition is inspired by
similar results for constrained zonotopes in [20].

Proposition 2: Consider a hybrid zonotope
Zh = HZ⟨Gc,Gb, c,Ac,Ab,b⟩ ⊂ Rn and a

partition
[
Ac Ab b

]
=

[
Ac

1 Ab
1 b1

Ac
2 Ab

2 b2

]
. For every

z ∈ Rn, z ∈ Zh if and only if
[
z
0

]
∈ Z+

h ≜

HZ

〈[
Gc

Ac
1

]
,

[
Gb

Ab
1

]
,

[
c
−b1

]
,Ac

2,A
b
2,b2

〉
.

For a hybrid zonotope Zh = HZ⟨Gc,Gb, c,Ac,Ab,b⟩,
we can form a lifted hybrid zonotope Z+

h by Proposition 2:

Z+
h = HZ

〈[
Gc

Ac

]
,

[
Gb

Ab

]
,

[
c
−b

]
, ∅, ∅, ∅

〉
. (15)

It is obvious that this lifted hybrid zonotope Z+
h is equiv-

alent to a union of lifted zonotopes with the same group of
generators and shifted centers, i.e., Zh = Z1∪Z2∪· · ·∪Z2nb ,

where Zi = Z

〈[
Gc

Ac

]
,

[
c+Gbξbi
−b+Abξbi

]〉
and ξbi ∈ {−1, 1}nb

for i = 1, . . . , 2nb .
Therefore, if there exist parallel generators for any of

the lifted zonotopes, all the other lifted zonotopes have the
same set of parallel generators. We then combine the parallel
generators for the lifted zonotopes and use Proposition 2 to
transform the reduced lifted zonotopes back to a reduced
hybrid zonotope with fewer continuous generators.

The approach described above can be used to remove
the continuous generators based on the generator directions.
In what follows, we provide another method to reduce a
continuous generator and an equality constraint at the same
time. The following proposition extends Proposition 5 in [20]
and is required in the complexity reduction algorithm.

Proposition 3: Let Zh = HZ⟨Gc,Gb, c,Ac,Ab,b⟩.
The set Z̃h ≜ HZ⟨Gc−ΛGA

c,Gb−ΛGA
b, c+ΛGb,A

c−
ΛAA

c,Ab − ΛAA
b,b− ΛAb⟩ satisfies Zh ⊆ Z̃h for every

ΛG ∈ Rn×nc and ΛA ∈ Rnc×nc .
The proof of Proposition 3 is omitted due to space

limitation. Proposition 3 allows us to choose any ΛA and ΛG

to get an over-approximation of a hybrid zonotope. Next, we
will introduce a heuristic approach to select proper ΛA and
ΛG that leads to a less conservative over-approximation.

Consider the equality constraint of the hybrid zonotope
Acξc + Abξb = b. The i-th row (i = 1, . . . , nc) of the
constraint can be written as∑

j=1,...,ng

Ac[i, j]ξc[j]+Ab[i, j]ξb[j] = b[i]. (16)

Following the procedure in [20], choose

ΛG=GcEc,r(A
c[r, c])−1,ΛA=AcEc,r(A

c[r, c])−1, (17)

where Ec,r ∈ Rng×nc is zero except for a one in the (c, r)
position and Ac[r, c] is the entry of Ac in the (r, c) po-
sition. With Z̃h = HZ⟨G̃c, G̃b, c̃, Ãc, Ãb, b̃⟩ = HZ⟨Gc −
ΛGA

c,Gb−ΛGA
b, c+ΛGb,A

c−ΛAA
c,Ab−ΛAA

b,b−
ΛAb⟩, this transformation uses the r-th row of (16) to solve
for ξc[c] in terms of ξc[k], k ∈ {1, . . . , c− 1, c+1, . . . , ng}.
This yields that G̃c and Ãc have identical zero c-th columns
and Ãc, Ãb and b̃ have identically zero r-th rows. Removing
these columns and rows results in a hybrid zonotope with one
less continuous generator and one less equality constraint.

This strategy ensures that the removed r-th equality con-
straint is still imposed in the reduced hybrid zonotope but
the ability to constraint the c-th continuous variable is lost,
i.e., |ξc[c]| ≤ 1. In order to select which continuous variable
to eliminate, we consider the Hausdorff error introduced by
reduction dH(r, c,Zh) = maxz̃∈Z̃h

minz∈Zh
∥z̃ − z∥2.

C. Reduction Algorithm
Algorithm 3 summarizes the procedures in this section for

reducing the numbers of continuous and binary generators
of hybrid zonotopes computed by the reachability analysis
(7). In this algorithm, Line 1-5 perform binary generator
reduction, Line 6-7 are used to remove redundant parallel
continuous generators, and Line 8-11 implement Proposition
3 to further reduce continuous generators.

V. SIMULATION

In this section, two simulation examples are provided
to demonstrate the performance of the proposed hybrid
zonotope-based reachability analysis method.

Example 1: Consider a double integrator model [10],
[11]:

x(t+ 1) =

[
1 1
0 1

]
x(t) +

[
0.5
1

]
u(t).



Algorithm 3: Complexity reduction for hybrid zono-
topes computed by (7)

Input: hybrid zonotope Zh = HZ⟨Gc,Gb, c,Ac,
Ab,b⟩, n̂g - number of continuous generators
to reduce, n̂b - number of continuous
generators to reduce

Output: reduced hybrid zonotope Ẑh

1
[
Gb

1 Gb
2

]
←− Gb; // Partition by n̂b

2
[
Ab

1 Ab
2

]
←− Ab; // Partition by n̂b

3 Ĝc ←−
[
Gc Gb

1

]
, Âc ←−

[
Ac Ab

1

]
4 Ĝb ←− Gb

2, Âb ←− Ab
2, ĉ←− c, b̂←− b

5 Ẑh ←− HZ⟨Ĝc, Ĝb, ĉ, Âc, Âb, b̂⟩
6 Ẑ+

h ←− lift Ẑh using (15)
7 Ẑh ←− remove parallel generators in Ẑ+

h and unlift
8 for i ∈ {1, . . . ,max{nc, n̂g}} do
9 (r, c)←− argminr,cdH(r, c, Ẑh)

10 (ΛG,ΛA)←− (17)
11 Ẑh ←− HZ⟨Ĝc − ΛGÂ

c, Ĝb − ΛGÂ
b, ĉ+

ΛGb̂, Â
c − ΛAÂ

c, Âb − ΛAÂ
b, b̂− ΛAb̂⟩

12 return Ẑh

We use the same 3-layer FNN with ReLU activation func-
tions in [11] as the feedback controller. Algorithm 1 is
implemented to get exact output sets of the FNN and
then utilized to compute the reachable sets of the closed-
loop system for T = 2 time steps based on Theorem
1 and Algorithm 2. The initial set is given by X0 =

HZ

〈[
0.2 0
0 0.2

]
,

[
0.25
0

]
,

[
2.5
0

]
, ∅, ∅, ∅

〉
.

We denote the proposed exact reachability analysis method
based on (7) and Theorem 1 as Reach-HZ. We compare the
proposed method with the Reach-CZ algorithm ([15]), the
Reach-LP algorithm ([11]), and the Reach-SDP algorithm
([10]). For the latter two algorithms, we also test the version
with initial set partition, i.e., Reach-LP-Partition and Reach-
SDP-Partition. Table I summarizes the computation times
and set over-approximation errors for the proposed method
and other state-of-the-art methods. The approximation errors
are computed based on the difference ratio of sizes of com-
puted reachable sets and exact reachable sets at the last time
step. Note that although both the proposed Reach-HZ method
and the Reach-CZ method can return the exact reachable
sets, Reach-HZ only takes about half of the time of Reach-
CZ. This results from the fact that Reach-CZ computes
each reachable set as multiple constrained zonotopes while
our Reach-HZ represents each reachable set compactly as
a single hybrid zonotope. Our algorithms are implemented
in Python with Gurobi [17]. The computer used for all the
algorithms has a 3.7GHz CPU and 32GB memory.

Figure 2 illustrates reachable sets of the double integrator
system using different methods. It can be observed that both
our method and Reach-CZ provide more accurate reachable
sets for all the time steps compared with other methods.
For the safety verification, we consider a star-shaped unsafe

Fig. 2: Reachable sets computed for the double integrator
example. The initial set X0 is shown in cyan and the star-
shaped unsafe region is in magenta. Reachable set computed
by Reach-HZ is plotted in blue. Reachable set computed by
Reach-CZ ([15]) is in black, the LP-based method ([11]) is
in red, and the SDP-based method ([10]) is in green.

Algorithm Runtime [s] Approx. Error
Reach-HZ (ours) 0.146 0
Reach-CZ [15] 0.312 0
Reach-LP [11] 0.032 3.34

Reach-LP-Partition 2.297 0.23
Reach-SDP [10] 108.77 0.79

Reach-SDP-Partition 5222.91 0.33

TABLE I: Comparison of different reachability methods for
Example 1. Reach-HZ returns exact reachable sets within a
shorter time compared with Reach-CZ.

region as plotted in Figure 2, which is represented by
a hybrid zonotope. We also compare the times used to
solve the safety verification conditions between the MILP-
based method in Proposition 1 and the LP-based method
in [15]. The commercial solver Gurobi takes 0.016 seconds
to solve the MILP-based conditions while the runtime is
0.063 seconds for MOSEK to solve the LP-based conditions
[29]. This is due to the fact that the LP-based conditions
require solving multiple LPs for each time step, while in our
approach, only one MILP is solved for each time step.

Example 2: Consider a 4-D lateral dynamics model:

x(t+ 1) =


0 1 5 0
0 −5 0 −9.5
0 0 0 1
0 0.05 0 −2.8

x(t) +


0
25
0
50

u(t).

A 2-layer FNN is employed as the feedback controller and
the initial set is given by X0 = [0.1, 0.9] × [−0.9,−0.1] ×
[0.05, 0.15]× [0.05, 0.15].

We implement the proposed Reach-HZ method and the
relaxed version denoted as Reach-HZ-Relax which com-
bine Reach-HZ with the complexity reduction method in
Algorithm 3. We also run the Reach-CZ and Reach-CZ-
Approx algorithms from [15] for comparison. Figure 3 shows
the one-step reachable sets of the lateral dynamics system
computed by four different methods and Table II summarizes
their runtimes. Similar to the previous example, our Reach-
HZ method provides the exact reachable set in a shorter



Fig. 3: Reachable sets computed for the lateral dynamics
example. Reachable set computed by Reach-HZ is plotted in
blue and the Reach-CZ method ([15]) is in black. Our Reach-
HZ-Relax computes the tightest convex relaxation (green),
while the Reach-CZ-Approx method ([15]) only provides a
more conservative convex relaxation (red).

Algorithm Runtime [s] Approx. Error
Reach-HZ (ours) 0.062 0

Reach-HZ-Relax (ours) 0.079 0.08
Reach-CZ [15] 0.110 0

Reach-CZ-Approx [15] 0.047 0.20

TABLE II: Comparison of different reachability-based meth-
ods for the lateral dynamics example.

time compared with Reach-CZ. Furthermore, our Reach-HZ-
Relax method provides the tightest convex relaxation (the
convex hull) of the reachable set while Reach-CZ-Approx
returns a more conservative convex relaxation.

VI. CONCLUSION

In this work, we introduce a novel approach for reacha-
bility analysis of neural feedback systems based on hybrid
zonotopes. We show that a ReLU-activated neural network
can be exactly represented by a hybrid zonotope. When the
input set of a neural feedback system is a hybrid zonotope, it
is also proven that the exact reachable sets can be compactly
represented by hybrid zonotopes. Based on the reachability
analysis, an MILP-based condition is presented for safety
verification of the neural feedback system. Complexity re-
duction techniques are also proposed for the hybrid zono-
topes to reduce the computation burden. As demonstrated in
two numerical examples, the proposed approach outperforms
other methods for reachability analysis and safety verification
of neural feedback systems.
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