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Abstract— This work presents a new shared control frame-
work for teleoperated vehicles, targeting critical safety chal-
lenges arising from the control communication latency and
the correctness of driver warnings. The proposed delay-
compensated shared control architecture integrates two key
components: a conformal prediction-based warning system that
proactively alerts remote drivers of potential hazards and an
onboard safety filter that combines a delay compensator, a
disturbance observer, and a control barrier function-based
quadratic program. The proposed design framework generates
real-time safe control commands at the human-operation level
despite delayed human inputs. A high-fidelity simulation plat-
form was developed for semi-autonomous vehicle teleoperation
using Chrono, a multi-physics-based simulator. Through exten-
sive experiments in diverse scenarios, the proposed approach
demonstrates robust performance and reliable safety mainte-
nance under aggressive maneuvers and communication delays.

I. INTRODUCTION

Autonomous vehicles (AVs) have made significant ad-
vancements in recent years. With the increasing commer-
cialization of AV technology, fully autonomous vehicles —
operating without an in-vehicle driver — have already been
deployed on public roads in various regions. However, ensur-
ing the transferability and adaptability of automated driving
solutions across diverse traffic scenarios remains a safety-
critical challenge [1], [2]. To bridge the gap to fully au-
tonomous driving without human supervision, teleoperation
has emerged as a fallback solution for managing situations
beyond AV capabilities, which enables a human driver to
assist a semi-autonomous vehicle (SAV) remotely when the
automated driving solution encounters some unknown edge
cases that may pose safety hazards [3]. Once the SAV nego-
tiates the edge cases, it can switch back to automated driving
mode as before. However, teleoperation faces several chal-
lenges, such as reduced situational awareness [4], which may
lead to improper commands from remote drivers. Moreover,
data transmission latency in sensor and control pipelines
between remote drivers and SAVs [5], as illustrated in Fig. El,
remains a safety-critical issue, as delayed vehicle information
and control commands can hinder timely response. Although
various techniques have been developed to mitigate delay
effects [6]—[8], latency may not be fully eliminated, which
may potentially compromise safety if SAVs are directly
controlled by remote drivers with delayed signals.
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Fig. 1: Framework of teleoperated driving for semi-
autonomous vehicles including sensor and control latency.

To that end, shared control is developed to address the
limitations of direct remote control [9]. In the shared control
scheme — particularly the mechanically uncoupled shared
control scheme defined in [10] — the driver’s control com-
mands are executed only if deemed safe; otherwise, the
system intervenes to prevent unsafe scenarios. Various shared
control strategies to override driver commands for safety
purposes have been developed, including model predictive
control (MPC) approaches [11]-[14]. However, these meth-
ods operate on high-level control inputs, such as velocity,
acceleration, or jerk, assuming that drivers also issue com-
mands at this level. This inconsistency with human-operated
inputs, such as throttle and braking, potentially reduces the
effectiveness of the driver’s response. Moreover, MPC may
become less effective when system dynamics exhibit strong
nonlinearity and safety constraints are highly complex.

This study focuses on the control pipeline in the teleop-
eration of SAVs, particularly within an uncoupled shared
control scheme. We propose a shared control mechanism
that integrates a warning system to detect potential safety
hazards and an onboard, delay-compensated safety filter. The
safety filter processes the human driver’s command directly
from reception to actuation by mitigating transmission de-
lays with a delay predictor, compensating for acceleration
discrepancies with a Disturbance Observer (DOB), and en-
hancing safety using Control Barrier Functions (CBFs) [15].
Additionally, a high-fidelity simulation platform for SAV
teleoperation was established using Chrono, a physics-based
dynamics simulation platform [16]. The platform enables
the customization of high-fidelity vehicle models, traffic
scenarios, and data transmission delays to simulate real-
world teleoperation conditions. All the codes for this work
are publicly availabl

Ittps://github.com/uwsbel/sbel-reproducibility/
tree/master/2025/CCTA-highwayControl
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The contributions of this work are twofold: (i) We propose
a novel safety filter mechanism that generates safe control
commands at the human-operation level, compensating for
control pipeline delays and enhancing teleoperated vehicle
safety. (ii) We develop a high-fidelity physics-based simu-
lation platform for the shared control of teleoperated SAVs.
The remainder of the paper is organized as follows. Section
presents the proposed shared control architecture; Section [ITI]
introduces the Chrono simulation platform and teleoperation-
related modules in Chrono; Section [[V|introduces the imple-
mentation details of the warning system; Section [V| presents
the onboard safety filter; the experimental results and the
corresponding analysis are given in Section concluding
remarks and directions for future work are provided in

Section

II. OVERVIEW OF SHARED CONTROL FOR
TELEOPERATED VEHICLES WITH SAFETY FILTERING

This section presents an overview of the proposed shared
control approach for teleoperated driving in Chrono (see Fig.
EI). Note that in this work, we focus on latency in the control
pipeline while ignoring the sensor pipeline delay. We will
address the sensing delay mitigation using Chrono in our

future work.
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Fig. 2: Shared control of teleoperated driving with delay-
compensated safety filtering in Chrono.

In our approach, a vehicle is modeled in Chrono as a
virtual replica of a real-world SAV. A warning system, con-
sisting of a neural network-based trajectory predictor and a
conformal prediction-based warning algorithm, continuously
monitors the vehicle’s driving conditions. Under normal con-
ditions, the vehicle operates autonomously using an onboard
controller without human intervention. However, when the
warning system detects imminent danger, it generates an
alert, prompting a remote human driver to take over control.
Using simulated scenes in Chrono, generated from remote
sensing data, the human driver issues control commands to
the vehicle. Due to communication latency in the control
pipeline, these delayed commands may compromise safety.
To address this, the delayed commands are processed through
a safety filter before being applied to the vehicle. The safety
filter consists of a delay compensator that mitigates the
effects of control delays and a Quadratic Program (QP)-based
filter that adjusts the compensated human commands in a
minimally invasive manner to enhance safety. Once driving

conditions become safe, control can be handed back to the
onboard automated controller.

The following sections will provide a detailed explanation
of each component of the architecture shown in Fig. [
including the Chrono simulator (Section , the driver
warning system (Section [IV), and the safety filter (Section

V).
III. THE CHRONO SIMULATOR

Chrono is selected for this study due to its optimal bal-
ance of accuracy, computational performance, and modeling
flexibility. It enables high-fidelity simulation of real-world
vehicle dynamics and sensor data collection, while main-
taining real-time performance in large-scale traffic scenarios
[17]. It is implemented as an open-source project allowing
unrestricted use and modification [18], thus allowing for
essential customizations in relation to modeling sensor data
delays and system command latencies. The users can define
a variety of vehicle types using JSON files or through a
Python/C++ API, and have the simulator solve the underlying
differential-algebraic equations governing the time evolution
of the vehicle models. For large-scale traffic scenarios, real-
time performance is achievable through its multi-process
simulation framework [19]. Additionally, Chrono includes
a human-in-the-loop interface and mature sensor support,
making it well-suited for AV/SAV testing tasks in this study
[20], [21].

Compared to other simulation platforms used in AV
research, Chrono stands out for its high-fidelity physics
modeling: CARLA [22] and AirSim [23] are two widely used
open-source simulators. CARLA is tailored for urban driving
with detailed road infrastructure but lacks high-fidelity ve-
hicle dynamics modeling; AirSim, originally developed for
drones and later extended to ground vehicles, runs on Unreal
Engine or Unity 3D but prioritizes realistic rendering over
accurate physics. Chrono’s emphasis on accurate physics
calculations makes it well-suited for applications requiring
precise mechanical system simulations, including vehicle
dynamics and large-scale traffic scenarios.

Chrono::Vehicle Module. Chrono::Vehicle is a special-
ized module within the Chrono framework that provides
parameterized templates for modeling various wheeled and
tracked vehicle subsystems. It supports vehicle simulations
in on- and off-road conditions, while incorporating closed-
loop and interactive driver models. Chrono::Vehicle offers
a comprehensive suite of subsystem templates for tires,
suspensions, steering mechanisms, drivelines, and external
systems such as powertrains, drivers, and terrain models.
Additionally, it includes utility functions for visualization,
monitoring, and data collection. The module supports three
categories of tire models: rigid, semi-empirical, and finite
element analysis-based models.

Chrono::Sensor Module. Chrono::Sensor is a real-time
capable sensor simulation module that supports cameras,
LiDARs, SPADs, and GPS/IMU to enable autonomous robot
simulations [20]. Chrono::Sensor employs a ray tracing en-
gine that utilizes the NVIDIA OptiX framework [24]. It
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Fig. 3: (Driver View) A driver using the Chrono-based driving simulator developed to control a vehicle by issuing throttle,
braking, and steering commands. (Third Person & Top View) Blender rendered snapshots of the third-person view and top

view during experiments.

uses path tracing with global illumination and physically-
based rendering to simulate the interaction of light with the
environment. Chrono::Sensor provides realistic sensor simu-
lations by modeling common artifacts, e.g., lens distortion,
depth-of-field, exposure, sensor noise, and sensor lag [25].
Driving Simulator. This study utilized PyChrono [26],
a Python interface for accessing the core functionality of
the Chrono simulation engine. PyChrono is chosen since it
easily interfaces to a variety of control-related packages used
in the community. The Chrono::Vehicle module enables the
configuration of a driving simulator for human-in-the-loop
experiments. The driving simulator setup includes a Logitech
G29 driving wheel and pedal, a simplified driving cabin,
and a monitor (see Fig. [3). To capture the communication
time delay, a buffered driver input is implemented, allowing
real-time control and customization of delay magnitude by
adjusting the input buffer. This approach provided fine-
grained control over delay variations, enabling a detailed
assessment of their impact on the system’s dynamic response.

IV. DRIVER WARNING SYSTEM

In this section, we introduce the driver warning system
designed for teleoperated driving in the traffic simulator. Our
system builds upon the approach in [27], which integrates
a trajectory predictor with conformal prediction, a statistical
inference technique. The warning system provides a formally
guaranteed false negative rate, ensuring that unsafe situations
are rarely missed without triggering an alert.

Trajectory Predictor. We employ the Spatio-Temporal
Attention Long Short-Term Memory (STA-LSTM) model
for vehicle trajectory prediction [28]. Given the historical
trajectories of the SAV and neighboring vehicles, the STA-
LSTM model encodes spatial relationships using a 3 x 13
tensor grid and captures temporal dependencies through the
attention mechanism. This model achieves high prediction
accuracy and enhances interpretability by highlighting how
past trajectories and interactions with surrounding vehicles
influence the SAV’s motion. The STA-LSTM model was
trained using a dataset comprising 80% NGSIM data [29]
and 20% driving data collected from Chrono simulations.

Warning Algorithm. We employ a conformal prediction-
based algorithm [27], outlined in Algorithm [T} to generate

alerts s, where s = 1 prompts the remote driver to take
control of the SAV. The inputs to Algorithm [I] include: a
safety threshold fy > 0; a warning threshold ¢ > 0; an
offline-collected calibration dataset {(Z, 21)} 2, where 2
represents the predicted trajectories of surrounding vehicles
and zj denotes the corresponding ground truth trajectories;
a new trajectory prediction Z,,.,,; and a safety score function
f that quantifies the “distance” to unsafe scenarios.

The safety score function f is designed to assess potential
safety hazards in the SAV driving scenario. Specifically, f is
defined to compute the minimum weighted distance between
the SAV and the predicted positions of surrounding vehicles
Z over the prediction length T':

min
ic{l,-, T}, jED;

f(2) = (30:0)T {wlong 0 } 30

0 Wiat
1

where wione and wi,y are weights of the longitudinal and
lateral directions, respectively; (%) is the predicted coordi-
nates of the j-th surrounding vehicle at time step 4 relative
to the SAV’s coordinate frame; D; = {j | |20, < r} is
the set of surrounding vehicles whose current positions lie
within a distance r from the SAV. Note that the safety score
function f is also applicable to the ground truth trajectory z
for identifying unsafe samples in the calibration data.
When a new trajectory prediction Z,,.,, is obtained based
on the current traffic conditions and historical trajecto-

Algorithm 1: Warning Algorithm (Adapted from [27])

Input: Exchangeable calibration data {(%x, 2x) }X,,
safety score function f, safety threshold f, > 0,
warning threshold e > 0, new prediction Z,c,,.

Output: s € {0,1}

A+~ {f(?:k) : f(Zk) < fo,k=1,.. .,K};

sample U uniformly by

U E ;{40,1}.(..,|)C‘L€.Aia:f(énew)}
acA:a<f(Znew)}|+U+1

q [A[+1

if ¢ <1 — € then

5 L return 1 else return 0
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ries, Algorithm E] utilizes the calibration dataset to assess
the predictor’s inaccuracy and subsequently generates the
warning signal s using the safety score function f. If the
exchangeability assumption holds for the calibration data
and the new prediction-ground truth pair (Z,cw, Znew) —
meaning that the probability of observing any permutation
of the calibration data and the new data point is equally
likely — then the warning signals produced by Algorithm
have a provable low false negative rate [27]. Specifically,
Pr(s=1]|f(znew) < fo) > 1 — (e +1/(1 + |A])). This
ensures that the system reliably issues alerts when a vehi-
cle takeover is necessary, minimizing the risk of missing
unsafe situations. A detailed explanation of exchangeability
is provided in [27], while the collection of exchangeable
calibration data within Chrono simulations is discussed in

Section

V. SAFETY FILTER

When the warning system issues an alert, the remote
driver takes over the vehicle and sends control commands.
However, due to delays in the control pipeline, the vehicle
may not respond immediately, potentially deviating from the
intended trajectory. In this section, we present a safety filter
design method to mitigate the impact of control delays while
filtering control commands to enhance vehicle safety with
minimal modification to the driver’s inputs.

As shown in Fig. 2] the safety filter comprises a delay
compensator and a DOB-CBF-QP module. The human-
issued desired control signals first pass through the delay
compensator to counteract control pipeline delays before
being DOB-CBF-QP processed to enhance vehicle safety.
The DOB is utilized to estimate uncertainties in the engine
mapping, ensuring more accurate control commands. Unlike
other model-based shared controllers [11]-[14], the proposed
safety filter directly produces human-operated level control
commands u = [, 3]T, where a € [—1,1] represents the
generalized throttle input which can be directly controlled
via the throttle and braking pedals and is directly applicable
to the driving simulator in Chrono, and 8 denotes the steering
input of the vehicle. This design enables the SAV to closely
replicate the remote driver’s intended actions.

For convenience, we define the control command vari-
ables as follows: wug(t) = [aq(t),Ba(t)]T is the de-
sired command sent from the remote driver; wuq(t — 1)
is the delayed command received by the SAV; a4(t) =
[6q(t), Ba(t)]T is the output of the delay compensator;
and ucpr(t) = [acpr(t), Bepr(t)] " is the filtered control
commands through the DOB-CBF-QP.

A. Delay Compensator

Since modeling the dynamics of the desired control com-
mands u4(t) is intractable, we employ a signal-level second-
order predictor to drive the predictor output @4(t) to converge
to ug(t) [7]. Meanwhile, the predictor error ug(t) — Ggq(t) is
kept smaller than the coupling error uy(t) — ugq(t — 71). The
dynamics of the second-order predictor are expressed as

ﬁd(t) =dq(t — 1) + k1 (ea(t — 1) — ﬁd(t —1))

+k2(ud(t—7'1)—ﬁd(t—7'1)) 5 (2)

where (k1, ko) are the PD gains. The guidance for choosing
(k1, ko) is provided in [7]. Given the delayed desired control
commands received by the SAV, uy(t — 1), the system
compensates for the impact of control delays by predicting
the current desired control command, u4(t). Herein, we focus
on the case of constant control pipeline delay. The extension
to varying delay scenarios is left for future research.

B. DOB-CBF-QP
We assume the dynamics of the SAV are described by

& = vcos(h), (3a)
y = vsin(6), (3b)
- %tan 8, (3c)
o ="T(a,v) + A, (3d)

where L denotes the length of the SAV, and x,y,0,v €
R represent the longitudinal coordinate, lateral coordinate,
orientation, and velocity of the SAV, respectively. Recall
that o € [—1,1] is the generalized throttle input, and
B is the steering input. The fitted engine model is given
by T(a,v) = po(v) + p1(v)a where po(v) and p;(v)
are polynomials (see Section for more details); the
modeling uncertainty/error of the engine mapping is denoted
as A = T(a,v) — T(a,v), where T(a,v) is the true
engine mapping. The mapping 7' is highly nonlinear in
practice, and the uncertainty in 7' can lead to incorrect
and unknown acceleration outputs, which will ultimately
compromise safety. To address this issue, we will design a
DOB to estimate the uncertainty A, a CBF to encode the
safety constraints, and a DOB-CBF-QP to compensate for
A while enforcing safety constraints for the system (3).

DOB Design. Following the procedure developed in [30],
we design the following DOB to estimate A online:

A=¢+m,
£ = —n(po(v) +p1(v)a+ A),

where ¢ is the internal state of the DOB and 1 > 0 is
the DOB gain. Assume that the derivative of the lumped
uncertainty is bounded, that is, A| < w, where w >
0 is a constant. Then, the disturbance estimation error
ea = A — A is uniformly ultimately bounded by |ea| <

\/|6A(0)\26*2"“ + %, where 0 < v < 2p is a constant
and k =n — % [30].

CBF Design. To first introduce CBF, consider a control-
affine system & = f(z) + g(z)u, where x € R" is the state,
u € R™ is the control input, and f : R® — R™ and g :
R™ — R™ ™ are known and locally Lipschitz continuous
functions. Define a safe set C = {z € R™ : h(z) > 0},
where A : R® — R is a sufficiently smooth function. The
function h is called a CBF of (input) relative degree 1 if
sup,epm [Lfh + Lghu+~vh] > 0 holds for all z € EI)R",

h

where v > 0 is a given positive constant, and Lgh = §*

and Lyh = % g are Lie derivatives. When the CBF condition

(4a)
(4b)




Lyh+Lghu+~h > 0 is incorporated into a QP, the resulting
CBF-QP-based controller can formally ensure the safety (i.e.,
h(x(t)) > 0 for any ¢ > 0) of the closed-loop system [15].

Given system (@), we define the safe set C for the teleop-
erated driving as follows:

C={(z.y.0,t) ER’ xRy : h(,y,0,4) 20}, (5)
where the function h : R* x R, — R is given as

h(z,y,0,t) = (p—po(t)) " R(6) " AR(6)(p—po(t))—1 . (6)

Here, p = [z y]", po(t) € R? denotes the position of the
cosf  sind

surrounding vehicle, R(f) = —sinfd cosf

] denotes the

. . _ 1/A2 0
rotation matrix, A = 0 1/A2] and Aq,A> > 0 are

constants. As shown in Fig. {i] the CBF h given in (€) aims
to keep a safe distance between the SAV and surrounding
vehicles, i.e., the surrounding vehicles are prohibited from
entering the ellipsoid region represented by C°.
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Fig. 4: Tlustration of the CBF defined in (€). The safe set C
denotes the exterior of the ellipsoid in grey.

DOB-CBF-QP Design. It is evident that h is a CBF of a
relative degree of 2 w.r.t. the control input o and 1 w.r.t. 5
for the system (3), which makes the CBF-QP design difficult.
To achieve a uniform input relative degree for h, we augment
the original system with an additional integrator:

& = vcos(h), (7a)
y = vsin(6), (7b)
6 = % tan 3, (7c)
v =po(v) +p1(v)a+ A, (7d)
f=x, (Te)

where x denotes the auxiliary control input to be designed
and [ is now considered as a state variable. Define the state
vector of as X = [z,y,0,v,58]". Note that h has a
uniform relative degree of 2 with respect to o and x.

We define an exponential CBF [31] h as h = h+ \h with
A > 0 a constant. The function A can be expressed as

h(X,t)= %v cos 0—1—2—21} sin 9—!—% ! tezn B—&—%—F)\h. (8)
Following [32, Theorem 2], we have the following result,
which introduces a DOB-CBF-QP that formally guarantees
the safety of system (7), ensuring that h(z(t),y(t),0(t),t) >
0 for any t > 0.
Theorem 1: Consider the augmented system (7) and
the safe set C defined in (5). Suppose that there ex-
ist A,(,7,n satisfying h(X(0),0) > 0, n > 2E* and

¢ > %. Then, any Lipschitz continuous controller

(OC,X) S KBF(Xa A) = {(a’7b) € R2 : 1/J0+7/}1a+¢2b 2 O}
will guarantee h(X (t),¢) > 0 for any ¢ > 0 where

oh oh . oh A
Vo = C %vcosejLa—yv s1n0+%(p0+A) 4ﬁ_27]
oh  w?

1 = Z2p1(v), and ¢y = GE.

Given the output of the delay compensator (dg, 3q), the
safe controller in Theorem E], « and y, can be obtained by
solving the following convex QP in real-time:

(a*,x*) =argmin  pallo — &gl + pyllx — Rall®> 9
a, X

s.t. g +’(ﬂ10¢+’¢2X >0,

where g, 11,19 are given in Theorem Paspx > 0
are positive constants, and Y4 is obtained via numerically
differentiating Bd. The filtered throttle input is designed as
acpr = o, and the filtered steering input Scpy is obtained
via integrating x*. Finally, (acpr, Scpr) are applied to the
SAV to ensure safe operation.

The parameters (pq, py) determine which desired control
input, oy or x4, should be better preserved by the safety
filter. For example, if p, > p,, the DOB-CBF-QP primarily
modifies the throttle while keeping the steering as close as
possible to the input from the remote driver. In practice, p,
and p, should be carefully tuned to maintain the performance
of the control inputs generated by the remote driver.

VI. EXPERIMENTS

In this section, we present the simulation environment
setup, the data collection process for engine mapping and the
warning system, and the teleoperation experiments for two
different driving scenarios. The Chrono simulations were run
on a workstation equipped with an AMD Ryzen 9 3900X 12-
Core processor, 32GB RAM, and an NVIDIA GeForce RTX
2070 GPU.

A. Simulation Environment Setup

The simulation environment is designed to replicate a
three-lane highway driving scenario. During the simulation
experiment, the Chrono::Vehicle agent, representing the SAV,
is operated by a human driver as shown in Fig. [3] The
steering angle mapping is set to be a linear function of the
driver’s steering wheel rotation. While the SAV employs a
high-fidelity physics-based model, the surrounding vehicles
utilize a lower-fidelity dynamics model to optimize compu-
tational efficiency. These surrounding vehicles exhibit three
behaviors relative to the SAV: (i) maintaining parallel motion
in the adjacent right or left lanes, (ii) merging from the right
or left lanes into the lane ahead of the SAV, and (iii) moving
forward directly in front of the SAV.

To introduce variability and realism into the simulation,
the speeds of the surrounding vehicles, along with the oc-
currence of each behavior, are randomly generated. Once the



speed and behavior of a surrounding vehicle are determined,
a corresponding reference trajectory is created. A simple
PID controller is then employed to regulate the surrounding
vehicle’s motion, ensuring it adheres to the desired speed
and driving behavior.

B. Calibration Data Collection for Warning System

As stated in Section[[V] Algorithm|[T] guarantees a low false
negative rate if the calibration data points are exchangeable.
Similar to [27], we generated diverse scenes in Chrono
by randomizing driveway shapes, the surrounding vehicles’
behaviors, and controller parameters. These different scenes
can be considered exchangeable. From each scene, a single
trajectory was randomly sampled, and its prediction and
ground truth were collected to construct a dataset of ex-
changeable trajectories.

C. Engine Mapping Fitting

In the experiments, we use a virtual BMW E90 sedan as
the SAV controlled by the remote driver. Chrono::Vehicle
provides high-fidelity engine modeling through an empiri-
cal RPM-to-torque mapping, which drives the power trans-
mission to the vehicle’s axles and wheels. Due to the
non-differentiable nature and complexity of this modeling
pipeline, directly integrating it into the vehicle dynamics
formulation is impractical. To address this challenge, as
discussed previously in Section [V-B] a polynomial engine
model T(a,v) defined in (7) is calibrated using data from
Chrono simulations, where the vehicle randomly undergoes
cycles of acceleration to target speeds (20-30 m/s) followed
by variable braking (10-60%). The fitted engine model’s
performance, trained using recorded speed, acceleration, and
throttle data, is validated as shown in Fig. |§I

D. Testing Experiments

Experiment I: Straight Lane Scenario. In this exper-
iment, a straight-lane driving scenario with a low-speed
leading vehicle is simulated in Chrono to evaluate the
performance of the proposed DOB-CBF filter and how the
choice of weight parameters (p,, py) influences the filtered
commands. For all the experiments in this scenario, the
motion of the leading vehicle is set the same, and the remote
driver aggressively approaches the leading vehicle with full

Acceleration (m/s?)

—— Real acceleration
— T(a,v)

0 25 50 125 150 175

75'I'ime (s)ma
Fig. 5: Comparison between the real acceleration and the
output from the fitted engine mapping model in a validation.

throttle and no steering actions. Since this experiment uses
constant driver inputs to evaluate the DOB-CBF-QP module,
both the warning system and delay compensator are not
central to this scenario, and their evaluation is omitted.

Figures [6a] and [6b] compare vehicle behavior with and
without a DOB when the safety filter is activated, using
weight parameters (pa,py) = (1,500). Since p, is much
larger than p,, the safety filter primarily modifies throttle
input rather than steering to enhance safety. It can be
observed that both safety filters override the improper driver
commands and take braking to avoid a collision. However,
the safety filter without DOB fails to ensure safety due to
inaccurate acceleration output from the fitted engine map-
ping, as shown in Fig. [7a] In contrast, Fig. [/b demonstrates
that the safety filter with DOB successfully maintains vehicle
safety, indicating the importance of the DOB in estimating
the engine mapping uncertainty.

Figure shows the vehicle behavior when the safety
filter is activated with a DOB and (pa,py) = (1,1). It
can be observed that the safety filter takes over the steering
commands to avoid the collision, though the remote driver
does not issue any steering commands. As a result, the CBF
values remain above the threshold as shown in Fig.
implying safety satisfaction.

E. Driving Experiment II: Complex Traffic Scenario

Experiment II: Complex Traffic Scenario. In this ex-
periment, a driving scenario with a curved driveway is
constructed to evaluate the performance of the proposed
shared control scheme. To mimic real-world driving scenar-
ios, the surrounding vehicles with the behaviors defined in
Section [VI-A] are randomly generated around the SAV. In
the experiment, a control delay 73 = 200 ms is injected in
the delay buffer to mimic the data-transmission delay in the
teleoperation. A lane-keeping MPC controller is employed

() (b) (©

Fig. 6: Visualization of Experiment I in Chrono. (a)
(Pa,py) = (500,1) with DOB, the safety filter ensures
safety. (b) (pa, py) = (500, 1) without DOB, the safety filter
fails to ensure safety. (c) (pa,py) = (1,1) with DOB, the
safety filter ensures safety by modifying steering.
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Fig. 7: Profiles of accelerations and CBF values in Experiment I: (a) Accelerations of the SAV with (p,, py) = (1, 500).
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as the onboard automated driving controller of the SAV. The
weights for the CBF defined in () are set to A; = 10 and
Ao = 4. The weights for the safety score defined in (T)) for
the warning system are chosen as Wiong = 1/400, wiae = 1,
and p, = p, = 1 for the DOB-CBF-QP in (9). The PD gain
for the delay compensator is chosen as k; = 0.6 and ky = 2.

Fig. [§ shows the driver’s control commands and the
minimal CBF values of the surrounding vehicles within a
distance r of the SAV in a segment of the entire simulation.
Recall the notations defined in Section [V} aq(t) and S4(t)
are the desired throttle and steering commands, respectively;
Grg(t) and By(t) are the output of the delay compensator,
respectively; and acpr(t) and Scepr(t) are the output of
DOB-CBF-QP which are applied to the SAV directly. Ini-
tially, the driver takes control of the SAV but issues some
improper steering and throttle commands, which makes the
safety filter intervene and mitigate the associated risk. The
warning system stops alerting around ¢ = 19.8 s, and the
vehicle is switched to the automated driving controller once
the traffic scenario is deemed safe from the driver’s judgment
att=21.3 s. Around t = 22.7 s, the warning system detects a
potential safety risk and issues an alert in advance. The driver
perceives the alert and then takes over the vehicle from the
automated lane keeping controller at ¢ = 22.9 s. Due to the
reaction delay, the driver does not brake promptly. The safety
filter hence intervenes by overriding the driver’s commands
to enhance safety. The driver continues to operate the vehicle
until the safety is reaffirmed by both the warning system and
the driver’s judgment.

By comparing the desired control input wug(t) =
[a(t), Ba(t)]T issued by the remote driver and the out-
put of the delay compensator iig(t) = [dq(t), Ba(t)]T in
Fig. one can see that the predictions 4(t) generated
by the delay compensator are phase-synchronized with the
driver’s original inputs wu4(t), which demonstrates the desired
performance of the delay compensator. Additionally, by
comparing the final output of the safety filter ucpr(t) =
[acBr(t), Bepr(t)] " and the output of the delay compen-
sator 14(t), one can observe that the safety filter preserves

the delay-compensated driver inputs 4 (t) when they are ap-
propriate, while intervening to modify control inputs (shown
in cyan and red blocks in Fig. [8) when the driver fails to
respond promptly to risks. As can also be observed from Fig.
[8 this intervention maintains CBF values above the safety
threshold, thus maintaining vehicle safety.

VII. CONCLUSION

In this work, a shared control architecture with delay-
compensated safety filtering for teleoperated SAVs was de-
signed and demonstrated in a driving simulator. A conformal
prediction-based warning system prompts remote drivers to
take control when unsafe conditions arise. To address control
delays and engine model uncertainty, an onboard safety
filter combining a delay compensator with DOB-CBF-QP
generates safe control commands at human-operated levels.
Experimental results show that the warning system provides
timely alerts, and the safety filter effectively mitigates delays,
enhancing SAV safety.
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