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Optimal Control for Kinematic Bicycle Model with
Continuous-time Safety Guarantees: A Sequential
Second-order Cone Programming Approach

Victor Freire and Xiangru Xu

Abstract—The optimal control problem for the kinematic
bicycle model is considered where the trajectories are required
to satisfy the safety constraints in the continuous-time sense.
Based on the differential flatness property of the model, necessary
and sufficient conditions in the flat space are provided to
guarantee safety in the state space. The optimal control problem
is relaxed into three second-order cone programs (SOCPs) solved
sequentially, which find the safe path, the trajectory duration,
and the speed profile, respectively. Solutions of the three SOCPs
provide a sub-optimal but feasible trajectory in the original
optimal control problem. Simulation examples and comparisons
with state-of-the-art optimal control solvers are presented to
demonstrate the effectiveness of the proposed approach.

Index Terms—Optimization and Optimal Control, Motion and
Path Planning, Constrained Motion Planning, Safety-Critical
Control.

I. INTRODUCTION

HE vehicle motion planning problem is well-studied.

However, fast algorithms tend to lack formal safety
guarantees while robust and safe planning methods are usually
slow, making them unfit for real-time implementation. The
search for fast and safe planning algorithms is key to achieving
provably safe driving autonomy [1], [2].

The literature addressing the vehicle motion planning prob-
lem is vast. A common approach is the spatio-temporal di-
vision of the problem. On the one hand, most path-finding
(spatial) algorithms parse the configuration space in search of
minimum length or curvature sequences [3]-[5]. For example,
in [4], the authors used RRT and B-splines to explore the
space and generate kinodynamically feasible paths; however,
their approach is computationally demanding because it needs
to verify feasibility at each RRT sampling step. In [5], a multi-
layer planning framework was proposed where sampling tech-
niques modify a global path for obstacle avoidance; however,
they rely on nonconvex minimization of the path’s curvature
to enforce kinodynamic feasibility. On the other hand, speed
profile optimization (temporal) algorithms focus on minimum
time and maximum rider comfort while navigating a given
path [6]-[8]. For example, [6] showed that a minimum-time
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Fig. 1. Architecture of the sequential SOCP approach. (PATH-SOCP) finds a
safe path 6(s), (TIME-SOCP) finds an appropriate trajectory duration ¢ ¢, and
(SPEED-SOCP) finds a safe speed profile s(t). These quantities parameterize
the flat outputs which can be converted into a state-space trajectory x(t)
and u(t) by the differential flatness property of the kinematic bicycle model,
where x(t) and u(¢) is a guaranteed feasible point of (OPT) by Theorem 1.

objective function can be reformulated in terms of the path
parameter, and the problem was generalized for certain classes
of systems in [7]. In [8], the authors used spatio-temporal
separation to alternatively optimize the path and the speed
profile; both problems are convex but the stopping criteria is
ambiguous.

The kinematic bicycle model is widely used and captures the
nonholonomic constraint present in vehicle dynamics. It has
been used in optimal control problems for motion planning.
For example, [9] studied the consistency of using the kinematic
bicycle model for motion planning by comparing its results
with a higher-fidelity model; [10] formulated an MPC problem
based on the kinematic bicycle model, but it is nonconvex and
provides no safety guarantees in the continuous-time sense;
[11] demonstrated the high performance of stochastic MPC in
a miniature racing environment, but their safety guarantees are
given in the probabilistic sense.

In this work, we formulate an optimal control problem for
vehicle motion planning using the kinematic bicycle model.
The state and input safety constraints include maximum
steering angle, position constraints, maximum velocity, and
bounded acceleration. We use differential flatness to formulate
conditions that guarantee continuous-time constraint satisfac-
tion in the state space. We then use spatio-temporal separation
and the convexity of B-splines to relax the original optimal
control problem into three sequential SOCPs yielding a path,
a trajectory duration, and a speed profile. We show that the
SOCEP solutions constitute a suboptimal but feasible solution to
the original optimal control problem. The convex SOCPs are
solvable by off-the-shelf solvers in real-time. The remainder
of the paper is organized as follows: Sec. II describes the
preliminaries and the considered problem; Sec. III provides
necessary and sufficient conditions in the flat space that guar-
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antee safety in state space; Sec. IV presents convex relaxations
and formulates the three SOCPs; Sec. V provides simulation
examples and Sec. VI concludes the paper.

II. PRELIMINARIES & PROBLEM STATEMENT

A. Kinematic Bicycle Model

The kinematic bicycle model is a commonly used, simple
model which captures the nonholonomic constraint present in
most wheeled vehicles, and it can be expressed as [12]:

x(t) = f(x(t)) + g(x(t))u(t), (1

where f(x) = (vcost,vsing,0,0)T, g(x) = (02«2, I2)7.
State and input vectors are, respectively, x = (x,y,v,9)7
and u = (0,1)7, where (x,y) is the position of the rear
wheel, v is the speed and ¢ is the heading angle (see Figure
2). The steering angle -y is also relevant and is given by v =
arctan(Li)/v), where L > 0 is the wheelbase length.

The kinematic bicycle model (1) is a special case of the
classical n-cart system and is known to be differentially flat
[13]. By choosing flat outputs as y = (x,%)7, the state and
input can be expressed as functions of y and its derivatives:

U(y.y.¥), 2)

where the flat maps ® and W are given as in [13]: v=|y||2,
Y =arctan(y/x), 0=y" ¥ /v and 1) = (§i—iy) /v?. Generating
a trajectory for differentially flat systems reduces to finding a
sufficiently smooth flat output trajectory [14]. For system (1),
y(t) needs to be at least twice-differentiable.

=0(y,y), u=

Fig. 2. Kinematic bicycle model and world (inertial) coordinate frame.

B. B-Spline Curves

B-splines are common in trajectory generation [4], [15],
[16]. A d-th degree B-spline basis \; 4(t) with d € Z~¢ is
defined over a given knot vector 7 = (19,...,7,)" satisfying
7 < Tiyq for i = 0,...,7 — 1 and is computed recursively
by the Cox-de Boor recursion formula [17]. Additionally, we
consider the clamped, uniform B-spline basis, which is defined
over knot vectors satisfying:

(3a)
(3b)

(clamped) 170 =...=7Tq, Ty—qd=...= Ty,

(uniform) 7Tg41 —Tg=...=TN41 — TN,

where N =71 —d— 1. A d-th degree B-spline curve s(t) is a
m-dimensional parametric curve built by linearly combining
control points p; € R™(i = 0,...,N) and B-spline bases of

the same degree. Given that s(t) = PA,4(t), we compute a
B-spline curve’s r-th order derivative with:

sz Tz—i—lAd T()

where the control points are grouped into a matrix P =
(Pgs---,Py) € R™*(N+1) | the basis functions are grouped
into a vector Ag_,(t) = (/\Od () ooy ANFr.d— r(t))T €
RN+r+1 " and bTv is the j-th row of a time-invariant matrix
B, € R<N+1)X(N+T+1) constructed as B, = My q4—+Cy,
where matrices My g, € RWHDX(N=r+l) and €, ¢
RW=r+)x(N+r+1) are defined in [16], [18].

Definition 1. [16] The columns of P(") & PB, are called the
7-th order virtual control points (VCPs) of s(") (t) and denoted
as p ( ) where i =0,1,...,N+r, ie,
[pg> L pg;;r} . )
Note that we use parenthesized exponent pgr) only to indi-
cate the order of VCPs. B-splines have some nice properties
such as continuity, convexity, and local support. The following
result ensures continuous-time set inclusion by using such
properties.

= PB,A4_ 4
dtr rild r(t)a ( )

P = PB, =

Proposition 1. [16] Given a convex set S and the r-th
denvattve of a clamped B-spline curve s ( ) defined as in (4),
lfpj €S, with j =r,...,N holds, then s'")(t) € S, t €
[10,Ty). Furthermore, if pg»r) eSS, withj=i—d+mr,...,i
and i € {d,..., N} holds, then s")(t) € S, t € [1;,Tiz1).

C. Second-order Cone Constraints

Second-order cone programs (SOCPs) are convex optimi-
zation problems of the following form [19]:

min. f'x, st [|Aix+bills < ¢/ x+d;, i=1,...,m,

where x € R"™ is the decision variable, f € R", A, €
Ri—Dxn 1 c R7~1 ¢, € R™ and d; € R. The constraint
above is the second-order cone (SOC) constraint. SOCPs are
a generalization of more specialized types of convex optimi-
zation problems such as linear programs (LPs) and quadratic
programs (QPs) [19]. SOCPs can be solved in polynomial time
by interior-point methods, and specialized SOCP solvers also
exist [20].

D. Problem Statement

We formulate the motion planning problem as the following
constrained optimal control problem with variable horizon:

min. vty + /tf L(x(t),u(t)) dt (OPT)
x(-)u(-),ts 0

s. t x(t) = f(x(t) + g(x(t))u(t),  (6a)

X(O) X0, (tf) = Xf, (6b)

0<w(t) <7, Vte][0,tf], (6¢)

[o(t)] <@, Vtel0,ty], (6d)

W <7, Ve 0t (6¢)

() €D, VEe 0t (6)
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where f and ¢ are defined in the kinematic bicycle model
(1), X0 and xy are given initial and final states, respectively,
v > 0 is the speed limit, D C R? is the obstacle-free region,
r £ (z,y)7 is the position vector, @ > 0 is the acceleration
bound and 0 < 7 < m/2 is the steering angle limit. The La-
grange cost functional L : R* x R? — R is chosen to promote
smoothness properties for the trajectory, and the parameter
v > 0 encodes the tradeoff between time-optimality and
smoothness. The optimal control problem (OPT) is generally
non-convex and computationally demanding to solve in real-
time. Furthermore, constraints (6¢)-(6f) are difficult to satisfy
strictly in the continuous-time sense because optimal control
solvers rely on discretization and these constraints are often
enforced only at discrete time instances [21], [22].

In this paper, we solve (OPT) by proposing a sequential
SOCP approach, which guarantees that the constraints (6¢)-
(6f) are rigorously satisfied in the continuous-time. While
we won’t compromise on safety (feasibility), we will trade
optimality for computational efficiency. Our approach lever-
ages the differential flatness property of the bicycle model
and parameterizes flat outputs using a pair of convoluted B-
spline curves. We consider a separation between space (R?)
and time to first find a path with desirable properties; then, we
use these properties to find a speed profile for navigating it.
Convoluting the path with its speed profile results in the flat
output trajectory required to recover the state-space trajectory.

III. SAFETY CONSTRAINTS SATISFACTION IN FLAT SPACE

In this section, we provide necessary and sufficient con-
ditions on the flat output trajectory y(¢) that can guarantee
continuous-time safety in the state-space.

Consider a path 0(s) = (z(s),y(s))T € C?:10,1] —» R?
and a speed profile s(t) € C? : [0,t;] — [0,1], where C? is
the set of functions whose derivatives, up to 2nd order, exist
and are continuous. The path and speed profile completely
define the flat output and its derivatives [23]:

y(t) = 6(s(t)), (7a)
y(t) = 5(1)0'(s(1)), (7b)
y(t) =35(t)0'(s(t)) + 5*(1)" (s(1)), (7¢)

where 0'(s(t)) denotes differentiation of 6 with respect to s
and taking values at s(t), and similarly for 8" (s(%)).

Remark 1. The parameterization shown in (7a) provides a
number of benefits. First, the map (2) has singularities if
ly(®)ll2 = 0 for some t (ie., ©(t) = y(t) = 0); however,
the convoluted parameterization shown in (7a) allows one
to avoid the singularity even in zero-speed situations [24].
Second, we can now consider the safety of the path 6,
such as obstacle avoidance and steering angle constraints,
independently of the speed profile s chosen later; that is, the
parameterization makes spatial constraints independent from
temporal constraints.

In the following, we will overload the notation of the
flat map (2) as ®(t) £ P(y(t),y(t)) = x(t), ¥(t) £
U (y(t),y(t),¥(t)) = u(t), where y(t) and its derivatives are
parameterized in (7a)-(7c).

A. Path Safety

Define the steering angle safety set and drivable safety set,
respectively, as:

S, &2 {(x,u) e R* xR?: |y| <7 < 7/2},
Sp2{xeR':r=(z,y)" € D},

®)
€))

with  the steering angle and D C R? the obstacle-free space.

Lemma 1. The state-space trajectory (®(t), ¥(t)) € S, for
all t € [0,ty] if and only if

16"(s) = 8" (s)2/116"(s)|3 < tan7/L, Vs €[0,1]. (10)

Proof. 1t can be shown from the expression of v given in Sec-
tion II-A and the considered parameterization (7a) that (t) =
arctan (L(y" (s)2'(s) — 2" (s)y'(s))/]|6(s)||3). Furthermore,
over the range v € (—n/2,7/2), tan|y| = |tan~y|. There-
fore, tan |y|/L = ||0'(s) x 8" (s)||2/]/6'(s)||3. Observing that
tan(|y|) < tan(y),y € (-=7/2,7/2) <= |y <7 <7/2,
the conclusion follows immediately. [

Lemma 2. The state-space trajectory ®(t) € Sp for all t €
[0,tf] if and only if

6(s) €D, Vsel0,1]. (11)

Proof. Recall that the speed profile s € C? : [0,¢f] — [0, 1].
Thus, the condition y(¢) = 6(s(t)) € D must hold for all
t € [0,ty]. The conclusion follows by the definition of Sp. O

B. Speed Profile Safety

Define the forward speed safety set and linear acceleration
safety set, respectively, as:

(12)
13)

S, 2{xeR:0< v <},
Sy 2 {uecR?: |0| <a},

with v and @ the speed and acceleration bounds, respectively.

Lemma 3. Let 0 be a path. The state-space trajectory ®(t) €
Sy for all t € 0,ty] if and only if

)20, SOI0GM) <7, Vel (14
Proof. The conclusion follows from the flat map (2) describing
the state v and the parameterization of y(¢) given in (7b). O

Lemma 4. Ler 0 be a path. The input trajectory V(t) € S,
for all t € [0,ty] if and only if
(15)

|a:(t) + an(t)| <@, Vi€ 0,tg],

where a; £ §)|0'(s)||2 and a, = $*(0'(s) - 0" (s))/(0'(s)|2.

Proof. Differentiating v(t) = $(¢)||6’(s(t))||2 with respect to
time we have (t) = a+(t) + a,(t). The conclusion follows
immediately by the definition of S,. O
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C. Flattened Optimal Control Problem

Consider now the following functional optimization prob-
lem:

min.
0(-),s(-).ty
S. t.

t
vty + / fL((I)(t),\I/(t)) dt, (FLAT-OPT)
0

®(0) =x0, P(tf)=xy,
(10), (11), (14) and (15) hold,

where @ € C? : [0,1] — R? and s € C? : [0,¢¢] — [0,1].

Proposition 2. If the duration ty, path 6 and speed profile s is
a solution of (FLAT-OPT), then the corresponding trajectory
given by x(t) = ®(t) and u(t) = V() is a solution of (OPT).

Proof. The constraints on the initial and final states hold:
®(0) = x(0) = x¢ and ®(t5) = x(ts) = x. By the definition
of each safety set S,,Sp,S, and S; and by Lemmas 1, 2,
3 and 4, it follows that the state-space trajectory x(t) and
u(t) satisfies all safety constraints in (OPT). The differential
constraint in (OPT) is automatically satisfied by virtue of the
differential flatness property [14] and C? smoothness of the
path 6@ and speed profile s. Finally, notice that the objective
functionals are identical in both problems. O

Proposition 2 is a particular case of the observation in [25]
that for differentially flat systems, optimal control problems
can be cast as functional optimization problems without differ-
ential constraints by virtue of the flatness property. Intuitively,
the state differential constraint is translated into a smoothness
constraint in the flat output. However, (FLAT-OPT) is still
intractable because the problem is nonconvex and we are
minimizing over functions instead of vectors. In the next
section, we will let the path @ and the speed profile s be B-
spline curves and optimize over their control points. We also
use their convexity properties to reformulate the constraints
into convex conditions with respect to their control points.

IV. CONVEXIFICATION OF PROBLEM (FLAT-OPT)

In this section, we describe a convexification approach for
(FLAT-OPT) by splitting the problem into three sequential
SOCEP: the first SOCP finds a safe path 6(s), the second SOCP
finds a duration ¢y for the trajectory, and the third SOCP com-
putes a safe speed profile s(t) (see Figure 1). The solution of
these three convex programs together provides a feasible and
possibly sub-optimal solution to (FLAT-OPT) with rigorous
continuous-time constraint satisfaction guarantees.

Definition 2 (B-spline path). A B-spline path is a C2, 2-
dimensional, dy-degree B-spline curve defined as in (4) over a
clamped, uniform knot vector ¢ segmenting the interval [0, 1]
and control points ®; € R?, j =0,..., Np.

Definition 3 (B-spline speed profile). A B-spline speed profile
is a C?, 1-dimensional, d,-degree B-spline curve defined as
in (4) over a clamped, uniform knot vector T segmenting the
interval [0,t¢] and control points p; € R, 7 =0,..., N,.

A. B-spline Path Optimization

The following propositions provide convex relaxations to
the conditions of Lemma 1 and Lemma 2.

Proposition 3. Ler 0(s) be a B-spline path. If there exist
positive constant o« > 0, column unit vector t € R?, and
variables vy, a9, € R such that the B-spline path 0(s)
satisfies the following conditions:

'O >y, j=1,...,Np, (162)
10, <@, j=2,...,Np, (16b)
|20 Ha23g 1) || <4Btany/L+1,  (160)
@ < avg— B, B,uy >0, (16d)

then the state-space trajectory (x(t),u(t)) € S,, Vt € [0,ty)
where S, is the steering angle safety set defined in (8).

Proof. By Proposition 1, conditions (16a)-(16b) imply that
vy < [|6'(s)|]2 and [|8”(s)||2 < @p for all s € [0,1). Expand
(16¢) to observe that 0 > a?—4[tan7/L3 £ A,. Notice that
A, is the discriminant of the quadratic polynomial: p(v,) =
v2tan¥/L — avy + (. It follows from A, < 0 that the roots
of p(vy) are either repeated and real, or complex conjugates.
Therefore, the polynomial p(v,) does not change sign. Since
p(0) > 0 (because 8 > 0), we must have that p(vy) > 0.
In particular, we can now observe that @y < avy, — <
vitany/L = [|0"(s)|]2 < |/6'(s)||3tan7/L holds. Now
multiply the implied inequality by [|@’(s)||2 > 0 to establish
16/ ()[3 tanT/L > [6”(5)llo1607(s)]|2 = [16/(s) x 6" (s)]]2.
The conclusion follows directly from Lemma 1. O

Proposition 4. Let D C R? be a given SOC. If the control
points ©; of the B-spline path 0(s) satisfy:

®,eD, j=0,...,N, (17)

then the state-space trajectory x(t) € D for all t € [0,15).

Proof. Condition (17) implies, by Proposition 1, that 8(s) € D
for all s € [0,1). The conclusion follows from Lemma 2. [J

Remark 2. While the obstacle-free space D is generally
nonconvex, the convexity assumption is easily relaxed by
considering the concept of “safe corridor” (union of convex
sets) and enforcing the conditions of Proposition 4 segment-
wise instead of globally. The reader is referred to our previous
work [16] and to [26], [27] for more information.

For fixed values of « and t, the conditions of Proposition 3
are convex and we can formulate the following SOCP to find
a safe path 0(s):

1

min. / 16" (s)||3 ds +Tp — vy +as  (PATH-SOCP)
0

S. t. @0 = Iy,

@gl) =Tp(cos Yy, sin wO)T,

®N9 = I‘f,
@S&zzﬁg(coswf?sinz/}f)T
’|®§1)H2§§9a j:17"'7N9a
(16) and (17) hold,

b
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with decision variables /3,7y, vy, @p and @y, ..., Oy,, where
7 is the maximum steering angle, r,, = (T, Ym)’, m €
{0, f} is the initial/final position vector and t),, is the ini-
tial/final heading angle. Note that the resulting B-spline path
0 has bounded derivatives given by Ty and ay which will be
used to guarantee the safety of speed profiles in Section IV-C.

Remark 3. Proposition 3 contains two convex relaxations
by lower-bounding a norm and a convex, quadratic function.
Because of the relaxations, the size of the feasible region of
(PATH-SOCP) depends on the choice of parameters o and t.
We found the following heuristics worked well:

2tan¥y

« rs —To
7l

rolls, T=-—"——-.
[y — roll2

B. Temporal Optimization

In this subsection, we find an appropriate trajectory duration
ty by considering a minimization of both ¢y and the mag-
nitude of the acceleration vector. Consider a B-spline path
0(s) feasible in (PATH-SOCP), and the functions b(s) = 52
and a(s) £ 5, which must satisfy the differential condition
b'(s) = 2a(s). Following [6], we have that

ty 1q 1
tfz/ 1dt:/ fds:/ b(s)~/2 ds.
S

0 0 0

Purely minimizing the trajectory duration given by ¢, results
in maximum-speed velocity profiles. We additionally minimize
the acceleration to encourage trajectories with mild friction
circle profiles [28] by choosing a Lagrange cost functional
L(X(t),u(t)) 2 02(t) + v2(t)p2(t) = ||§(t)]|3. We can now
write the objective functional entirely in terms of (and convex
with respect to) the new functions a(s) and b(s) as follows:

(18)

J(a

+ [la()8'(s) + b(s)8” ()| 2 ds.

=] s
We follow a similar procedure as in [6] and consider N; + 1
points partitioning the interval [0, 1] into N; uniform segments
with width As £ 1/N,. The discretized Lagrange cost
functional becomes L(s;,a;,b;) = ||a;0'(s;) + b;0"(s;)]/3,
where a; and b; are the decision variables representing a(s;)
and b(s;), respectively. Assuming that a(s) is piecewise con-
stant over each segment [s;, $;+1),¢ = 0,..., Ny — 1 where
s; 2 iAs, we can exactly evaluate the integral (18) to avoid the
case when $ = 0 as shown in [6]. We formulate the following
SOCP to obtain the trajectory duration ;:

min. Nil 2wAsd; +ZL Sy a, b;) (TIME-SOCP)
|| 201-, i — TH2§bi+1, i=0,...,Ng,
|(2,e —d)"|, <e+di i=0,...,N,— 1,
2Asa; =b; —b;_q, i=1,..., Ny,
boll6"(0)]13 = v5, b, (0" (D)5 = vF,
bi||0' (si)||3 <%, i=0,...,Ny,
ai||0'(si)ll2 +bifi| <@, i=0,...,Ny,

Ji = (0'(s1) - 0"(50) /110(s)|2,

— A
C; = Ci+1 + ¢,

with decision variables a;, b;, ¢;,d;, i = 0,..., N;. The first
two constraints are the SOCP embedding of (18) given in [6],
the third constraint is from the differential constraint relating
a(s) and b(s), the fourth sets initial and final speeds, the fifth
ensures the speed bound is respected and the sixth ensures the
acceleration bound is respected. From our assumption that the
function a(s) is constant over each [s;, $;11) segment, we can
recover the duration of each segment from the constant accel-

eration equation At; = (vb; + /bi_1)/a;, i = 1,..., N;.
The overall duration of the trajectory is then t; = ZZ 1 At

Remark 4. The solution of (TIME-SOCP) provides a safe
speed profile at discrete time instances. If continuous-time
safety is not critical, it suffices to stop here and retrieve
the discretized state-space solution. In addition, if the desired
trajectory duration ty is known, one can skip (TIME-SOCP)
and proceed to the next SOCP after solving (PATH-SOCP).

C. Speed Profile Optimization

Assume that ¢y is given by the solution of (TIME-SOCP)
or specified a priori. Let 6(s) be a B-spline path feasible
in (PATH-SOCP) and s(t) be a B-spline speed profile. The
following propositions provide convex relaxations to the con-
ditions of Lemma 3 and Lemma 4.

Proposition 5. If the condition

Oﬁﬂepgl) <7, jzla"'aNsa (19)

holds, then the state-space trajectory x(t) € S,, Vt € [0,ty),
where S, is the forward speed safety set defined in (12).

Proof. By Proposition 1, (19) implies that 0 < Tyé(t) <
for all ¢ € [0,¢7). Because T > Tps(t) >

16 (s®))ll2

v
v(t) > 0, the conclusion follows. O

Proposition 6. For any given nonnegative vectors K =
(Ro, - -+ EN.—a.)T and € = (€0, ...,en.—a.)T, if the follow-
ing conditions

0<p) <Ry j=k+l.. k+d, (20a)
e <p) <@, j=k+2,...k+d, (20b)
| A (Fr, &)™ +boll, < [Fr &) co +ds, (200)

hold for all k € {0,...,Ns; — ds}, where A; = diag(\/2ay,
—T9/V2), by = (0,(@—1)/v2)T, ¢; = (0,—vp/v2)T and
dy = (@+ 1)/V/2, then the trajectory u(t) € Sy, Vt € [0,t)

where Sy is the linear acceleration safety set defined in (13).

Proof. The first two conditions imply, by Proposition 1, that
for any £ € {0,...,N; — ds}, 0 < 5(t) < R and
|5(t)] < € hold V¢ € [Tktd,, Thk+d,+1). Expanding the last
condition, we determine that for any k € {0,...,N; — ds},
0 < Reay + exvg = |Riag| + |€xvs| < @ Notice that for
any k € {0,..., N, —d,}, the following conditions hold for
all t € [mdg,mfz 1) [l > 15010 ()2 = la(?)],
®aol > |3(1)(6'((1)) - 0 (s(0)) /16 (s )| = lan(t)]:
where a; and an are defined in (15). Therefore, by the triangle
inequality @ > |a.(t)| + |an(t)] > |ai(t) + an(t)| holds for
all t € [Tk+d,, Th+d.+1)- Recalling that the knot vector T is
clamped and uniform (3), segmenting the interval [0,¢¢], and
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that the above inequality holds for all £ € {0,..., N, — ds},
we can establish that the inequality holds, in fact, for all
t € [0,t7). The conclusion now follows by Lemma 4. O

The vectors ®,€ € RMN:~9+1 represent segment-wise
bounds on the first and second order derivatives of s(t),
respectively. We will introduce them as optimization variables
in the following SOCP to obtain the speed profile.

/0 tf §2(t) dt

p0:07 PN, :15

— 1 — 1
Uepg )= Vo, Uepgvz = vy,

(19) and (20) hold,

__min.
R,€,P0;-- PNy

(SPEED-SOCP)

S. t.

where vy and vy are given initial and final speeds, respectively.

Remark 5. The spatio-temporal separation presents both a
challenge and an opportunity: on the one hand, we lose
optimality with respect to the original optimal control problem
because the divided cost functions usually fail to represent
the original one; on the other hand, we gain the flexibility
to separately define desirable paths, trajectory durations and
speed profiles. We found that the cost functions for the SOCPs
yielded trajectories with small costs when evaluated in the
original optimal control problem’s cost function.

D. Safety Analysis
The following theorem summarizes the main theoretical
contributions of this paper.

Theorem 1. Let 0(s) and s(t) be, respectively, a B-spline path
feasible in (PATH-SOCP) and a B-spline speed profile feasible
in (SPEED-SOCP) with duration t ;. The state-space trajectory
of (1) obtained by passing the parameterized flat outputs (7a)
through the flat map (2) satisfies the initial x(0) = xo and
final x(ty) = xy conditions as well as safety specifications:

(x(t),u(t)) € S, ut) €S, (21
Vt € [0,tf). Thus, ty, x(t) and u(t) are feasible in (OPT).

x(t) € SpNS,,

Proof. The initial and final positions (x,y) are satisfied by
0(0) = ro = (z0,90)" and 0(1) = ry = (z4,ys)T. Also,
|0(s)|l2 = Ty for s € {0,1}. Since s(0) = 0, s(ty) = 1,
Up5(0) = vy and Tps(ty) = vy, the flat map (2) implies
that the obtained state trajectory x(t) satisfies the specified
initial and final velocities vy and vy. For 1y and %y, no-
tice that 8'(m) = (x’(m),y’(m))T = Dy cos 1/Jq,sin1l)q)T,
with (m,q) € {(0,0),(1,f)}. Since the heading (t) is
given only by the path 6(s), it follows that ¢(p) =
arctan (Tg sin g/ (Tg cos 1hq)) = g, (p,q) € {(0,0), (1, f)}.
Finally, (21) follows by Propositions 3, 4, 5 and 6. O

V. SIMULATION EXAMPLES

We evaluate the performance and efficiency of the proposed
approach! by three simulation examples. In all examples, we
use B-spline path @ parameters dyp = 4 and Ny = 20, and

I'Source code: https://github.com/wisc-arclab/FlatVCP.

B-spline speed profile s parameters d; = 4 and N, = 20. For
(TIME-SOCP), we use N; = 40. We solve the three SOCPs
using YALMIP [29] with MOSEK solver [20].

Example 1. Consider (OPT) with the following problem data:
initial state xg = O4x1, final state x; = (100,4,0,0)7,
obstacle-free space D = R?, maximum steering angle 5§ =
0.0044 rad (0.25 degrees), maximum speed v = 4.2 m/s, accel-
eration bound @ = 0.6 m/s?, duration penalty factor v = 1 and
wheelbase length L = 2.601 meters. Note that this problem
requires rest-to-rest motion to be solved and, as described
in previous sections, the flat map has singularities when the
speed is zero. Nonetheless, our approach is able to handle this
gracefully. We continue by solving the three proposed SOCP
problems sequentially. We then pass the resulting path and
speed profile through the flat map (2) to obtain corresponding
state x(t) and input u(t) trajectories. The resulting state and
input trajectories are shown in Figure 3 along with the steering
angle ~(t). The speed v the acceleration v and the steering
angle ~y respect their bounds for all time t € [0,1].

Example 2. We compare the performance and optimality of
the proposed framework with two general optimal control
solvers, ICLOCS2 [31] and OpenOCL [30], and a state-of-
the-art algorithm for vehicle motion planning, Convex Elastic
Smoothing (CES) [8]. The vehicle considered is a 2021 Bolt
EV by Chevrolet with a wheelbase length of L = 2.601 meters.
We assume a 2-lane, straight, road with a posted speed limit
of 40 miles per hour and consider a left lane change. The
initial and final states are specified as xo = (0,0,16,0)T and
x5 = (75,3.7,17.5,0)T, respectively. The other parameters,
when applicable, are chosen as 7 = 0.785 (45 degrees),
D=R% T =19 mls, a=2mis? and v = 1. With these
parameters, we solve the optimal control problem (OPT) with
the proposed framework, ICLOCS2 with analytical derivatives
provided, direct collocation transcription and 40 discretization
samples, OpenOCL with fast, automatic differentiation using
CasADi [32] and 40 discretization samples, and we use 40
trajectory samples and iterate 5 times over the CES algorithm
alternating between elastic stretching and speed optimization.
The resulting trajectories x(t) and u(t) are shown in Figure
4. To compare the computational burden of each algorithm,
we collect average solve times with each approach. The
results are shown in Table I. In this example, the proposed
approach achieved solve times nearly four times faster than
the next leading method. In addition, the objective value of
the proposed approach, while higher than some, was still
comparable to that of the other solvers.

Example 3. We demonstrate the real-time capabilities of

TABLE 1
EFFICIENCY AND OPTIMALITY OF COMPARED SOLVERS.

Avg solve time [ms] | Objective value [-]
Proposed method 28.8 6.8495
CES (5-iter) [8] 93.1 7.1334
OpenOCL [30] 94.3 6.5534
ICLOCS2 [31] 257 6.8134
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Fig. 4. Simulation results of Example 2 showing the state and input

Fig. 3. The state (top) and input (bottom) trajectories of Example 1 show that
the required safety constraints are all satisfied for all ¢ € [0,%]: the speed
respects v(t) < 4.2 m/s, the acceleration respects |9(¢)| < 0.6 m/s? and the
steering angle respects |y(t)| < 0.25 deg.

the proposed approach in a simulated scenario located at
Mecity’s main roundabout. The vehicle begins from rest at
the roundabout entrance and adjusts to existing traffic to
take the roundabout’s second exit. We enforce the constraint
v(t) < T = 11.176 m/s (25 mph). We also consider two actors
driving around the roundabout with constant speed of 5 m/s.
The adjustment to traffic is done by simple behavioral logic as
follows: If the planned trajectory, with desired final position
ry located 15 meters ahead on the road, is obstacle-free, it
is used; otherwise, if it collides with the vehicle in front, we
adjust the endpoint of the trajectory to be 8 meters behind
the leading vehicle (but still on the road’s center line) and
enforce a final speed vy = 2.5 m/s. The proposed framework is
executed at 25 Hz in the sense that the computation (including
all three SOCPs and other algebraic operations) of each
iteration can be done within 0.04 seconds. The scenario is
rendered in MATLAB’s 3D simulation environment powered
by Unreal Engine [33]. We show snapshots of the trajectory

trajectories obtained with each solver.

at five different time steps in Figure 5. The figure also shows
a bird’s eye view of the scenario and the planned trajectory
at the current time step (gray line).

VI. CONCLUSIONS

We presented a sequential SOCP approach to solve the
optimal control problem with a kinematic bicycle model
where solutions are guaranteed to satisfy the constraints in
the continuous-time sense. We also compared the performance
of the proposed method with state-of-the-art optimal control
solvers/algorithms to demonstrate its efficiency in simulated
scenarios. In future work, we will further explore the flexibility
of the proposed approach such as achieving dynamic obstacle
avoidance by only resolving the SPEED-SOCP with added
constraints. We will also generalize our work to more realistic
settings such as considering dynamic obstacle constraints and
imperfect system models.
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Fig. 5. Navigation using the proposed approach to solve (OPT) at 25 Hz in Example 3. The figure shows the scenario at times ¢t = 0, 2,4, 6, 8 seconds.
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