
1

Flatness-based Quadcopter Trajectory Planning and
Tracking with Continuous-time Safety Guarantees

Victor Freire and Xiangru Xu, Member, IEEE

Abstract—This work proposes a convex optimization-based
framework for the trajectory planning and tracking of quad-
copters that ensures continuous-time safety guarantees. Using
the convexity property of B-spline curves and the differential
flatness property of quadcopters, a second-order cone program
is formulated to generate an optimal nominal trajectory that
respects state and input constraints, including position, linear
velocity, angle, angular velocity, thrust, waypoints, and obstacle
avoidance constraints, rigorously in the continuous-time sense. To
ensure safe trajectory tracking, a convex quadratic program is
proposed based on control barrier functions, which guarantees
that the actual trajectory of the quadcopter remains within a
prescribed safe tube of the nominal trajectory in continuous time.
Furthermore, conditions that ensure the safe tracking controller
respects thrust, roll, and pitch constraints are also presented.
Both the planning and control approaches are suitable for online
implementation, and the effectiveness of the proposed framework
is demonstrated through simulations and experiments with a
Crazyflie2.1 nano quadcopter.

Index Terms—Safety-critical control, quadcopters, motion plan-
ning, second-order cone program, control barrier functions

I. INTRODUCTION

AUTONOMOUS quadcopters have been widely used in
many fields such as cinematography [1], search and

rescue [2], agriculture [3] and delivery [4]. Many of these
applications are safety-critical, where safety is defined as the
rigorous satisfaction of constraints expressed in terms of states
and inputs of the quadcopters. Although numerous trajectory
planning and tracking methods have been proposed for quad-
copters, a systematic approach that is real-time implementable
and can provide a formal safety guarantee in the continuous-
time sense is still largely lacking.

The trajectory planning problem is usually split into find-
ing discrete waypoints that avoid obstacles, and generating
a smooth curve that respects the system dynamics through
the waypoints. However, a trajectory generated this way is
normally only safe at the discrete waypoints without a formal
safety guarantee in-between. The inter-sampling safety can
be improved by increasing the number of samples at the
expense of computation, which works well in practice but
lacks a rigorous continuous-time guarantee [5]–[11]. Some

Manuscript received 31 October 2021; revised September 6 2022; accepted
20 February 2023. Recommended by Editor in Chief Andrea Serrani.
(Corresponding author: Xiangru Xu.)

Victor Freire and Xiangru Xu are with the Department of Mechanical
Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
(email: freiremelgiz@wisc.edu; xiangru.xu@wisc.edu).

Digital Object Identifier see top of this page.

Fig. 1. Configuration of the proposed convex optimization-based planning and
control framework for quadcopters with continuous-time safety guarantees.
The safe trajectory planning is based on solving a second-order cone program,
and the safe trajectory tracking is based on solving a quadratic program.

recent works exploited the differential flatness property of
quadcopters and the convexity property of B-spline basis
functions to generate trajectories with continuous position
safety guarantees [12]–[15]; however, the highly nonlinear
flat maps between state/input spaces and the flat output space
makes the satisfaction of many non-trivial safety constraints
in the state/input space challenging, and the nonconvex opti-
mization problems formulated in these works render the online
trajectory re-planning computationally intractable.

Some recent works aim to improve the tracking performance
of quadcopters, particularly for aggressive flights [16]–[19].
Controllers designed in these works are endowed with stability
and/or performance guarantees, but not safety. Safe controllers
based on reinforcement learning and Gaussian Processes have
been investigated for quadcopters in [20]–[22], but these
works don’t provide continuous safety guarantees. One line of
research that can provide formal safety guarantees in the sense
of forward invariance of a given safe set in continuous time
is based on control barrier functions (CBFs) [23]–[27]; for
example, [26] employed CBFs to guarantee visibility in quad-
copter visual serving control and [27] presented a CBF-based
method for assisting human pilots to teleoperate quadcopters
inside constrained environments with safety guarantees.

This paper proposes a convex optimization-based framework
that guarantees continuous-time safety satisfaction of quad-
copters for both trajectory planning and tracking (see Figure
1). The contributions of this work are at least threefold:

1) Based on the differential flatness of quadcopters and the
convexity of B-spline curves, a second-order cone pro-
gram (SOCP) framework is proposed for safe trajectory
planning for quadcopters online. The position, linear
velocity, angle, angular velocity, thrust, waypoints and
obstacle avoidance safety constraints of the quadcopter

2

TABLE I
COMPARISON OF RELEVANT QUADCOPTER TRAJECTORY GENERATION APPROACHES

Approach Advantages Disadvantages
flatness + B-splines (this work) formulated as convex SOCPs; continuous constraint

satisfaction; position, velocity, angle, angular velocity,
thrust, and waypoints constraints considered.

constraint convexification can be conservative; known
safe corridor required in collision avoidance.

flatness + B-splines [13] continuous constraint satisfaction; waypoint, thrust
and angle constraints considered.

formulated as nonconvex problem.

flatness + piecewise polynomials [6],
[7]

formulated as convex QPs; position, velocity, acceler-
ation and input constraints considered.

constraints satisfied only at discrete points.

flatness + Bernstein polynomials [28] continuous constraint satisfaction when convergence
achieved; admit general constraints.

optimization can be nonconvex; convergence in the
limit when the polynomial degree approaches infinity.

optimal control [29], [30] admits general state-space constraints; generic solvers
exist.

nonconvex problem in general; constraints satisfied
only at discrete points.

primitives [31] very fast; angular velocity, thrust, and translational
constraints considered.

no constraint satisfaction guarantee; verification must
be done offline.

successive convexification [8] formulated as convex problems, inter-sample collision
avoidance satisfied.

can only handle simple obstacle geometries; locally
optimal trajectories.

are relaxed as second-order cone constraints in the
SOCP, and the trajectory generated by solving the SOCP
is proven to rigorously satisfy all the safety constraints
in the continuous-time sense.

2) A control barrier function (CBF)-based quadratic pro-
gram (QP) method is proposed to generate safe trajec-
tory tracking controllers, such that the real trajectory
of the quadcopter lies in a prescribed safe tube of the
nominal trajectory in the continuous-time sense. Suffi-
cient conditions that guarantee the rigorous satisfaction
of the thrust, roll angle and pitch angle constraints are
also provided.

3) Simulations and experiments are presented to demons-
trate the effectiveness and computational tractability of
the proposed approach.

The remainder of the paper is organized as follows: Sec. II
reviews related works; Sec. III introduces necessary prelimi-
naries; Sec. IV provides sufficient conditions for continuous-
time set inclusion using B-spline curves; Sec. V provides
the SOCP-based framework for quadcopter trajectory plan-
ning with rigorous continuous-time safety guarantees; Sec. VI
presents a CBF-QP-based method for safe trajectory tracking;
Sec. VII presents the simulations and experiments and Sec.
VIII concludes the paper.

II. RELATED WORK

While a large number of trajectory planning methods for
quadcopters have been proposed in the literature, an approach
that is both real-time implementable and capable of pro-
viding rigorous safety guarantees in continuous-time is still
lacking. Most relevant to this work are the methods based
on differential flatness [32]. In the seminal work [6], the
authors showed that quadcopter systems are differentially flat,
and they proposed a convex QP-based method to synthesiz-
ing three-dimensional trajectories (parameterized as piecewise
polynomials) for quadcopters with constraints on positions,
velocities, accelerations and inputs; however, the trajectories
generated may violate the constraints as they are only enforced
at certain discrete time instances. This method was extended

in [7], where the authors formulated the trajectory generation
problem as a numerically stable unconstrained QP that is also
coupled with a kinematic planner; although this approach is
computationally more efficient, it provides no improvement on
constraint satisfaction. In [28], the authors proposed a discrete-
time approximation of continuous-time optimal control prob-
lems for differentially flat systems by using Bernstein polyno-
mials; however, the convergence of the discrete solution to the
solution of the continuous-time problem requires the Bernstein
polynomial degree to approach infinity. In [12] the authors
considered the constrained trajectory generation problem of a
2D 3-DOF model of a fixed-wing UAV and formulated it as an
optimization problem by using the B-splines parametrization;
although the trajectory generated ensures continuous validation
of the state and input constraints, the resulting optimization
problem is nonconvex and difficult to implement online. Me-
thods based on the B-spline parametrization of trajectories for
quadcopters were also explored in works such as [13], which
formulated a nonconvex optimization problem with waypoints,
thrust and angle constraints, and [15], which provided a
computationally efficient treatment of obstacle avoidance and
considered velocity and acceleration constraints, but fails
to address other important state/input constraints and lacks
rigorous safety analysis. Our method also builds on B-spline
curves and differential flatness, but the quadcopter trajectory
planning problem in our framework is formulated as a convex
SOCP with rigorous continuous satisfaction for position, linear
velocity, angle, angular velocity, and thrust constraints.

Besides flatness-based methods, various other approaches for
quadcopter trajectory planning have been proposed in the lit-
erature [9], [29], [31], [33]–[35]. In [31] the authors proposed
a computationally efficient, motion primitives-based trajectory
generation approach, but their method doesn’t admit constraint
satisfaction at solve time. In [35] the authors proposed a hybrid
approach that first used sampling-based techniques to find
an obstacle-free path and then used convex optimization to
obtain a feasible and safe trajectory; however, this approach
provides no continuous safety guarantees. In [8] the authors
proposed a successive convexification approach to converge
towards obstacle-free trajectories in the continuous-time sense;

3

however, their method relies on finite violations derived from
polynomial dynamics systems. A comparison of the advan-
tages and disadvantages of relevant approaches for quadcopter
trajectory generation is given in Table I.

III. PRELIMINARIES

A. Quadcopter Dynamics & Differential Flatness

We consider the following 9-state quadcopter model that
neglects aerodynamic effects and external disturbances (e.g.,
wind) in the trajectory planning problem [6]:

r̈=TzB − gzW , (1a)

ξ̇=N−1(ξ)ω, (1b)

N(ξ)=

1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ

 , (1c)

RWB =

cθcψ sφsθcψ − cφsψ sφsψ + cφsθcψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

 (1d)

=
[
xB yB zB

]
,

where zW = (0, 0, 1)T is the world-frame’s z-axis, r =
(x, y, z)T is the position vector, ξ = (φ, θ, ψ)T is the Z-Y-
X Euler angle vector (see Figure 2), ω = (p, q, r)T is the
angular velocity vector, T is the normalized thrust, and s, c
stand for sin and cos, respectively. The state and input vectors
are expressed, respectively, as:

x =
[
rT ξT ṙT

]T
, u =

[
T ωT

]T
. (2)

The quadcopter model shown in (1) is known to be dif-
ferentially flat [6], [37]. By choosing flat outputs as σ =
(x, y, z, ψ)T , the state and input can be expressed as a function
of σ and its derivatives for some Φ:

(x,u) = Φ(σ, σ̇, σ̈,
...
σ), (3)

where the expressions of Φ are given as [6], [38]:

φ = sin−1

(
zTWyB

cos(sin−1
(
zTWxB)

)), p = −yB · hω,

Fig. 2. Inertial (or world) coordinate frame W (black) and body coordinate
frame B (blue). The intermediate coordinate frame C (red) is also shown.
Crazyflie2.1 figure from [36].

θ = − sin−1(zTWxB), q = xB · hω,
T =

√
ẍ2 + ÿ2 + (z̈ + g)2, r = zB · ψ̇zW ,

with intermediate quantities:

T =
[
ẍ ÿ z̈ + g

]T
, yC =

[
− sinψ cosψ 0

]T
,

xB =
yC × zB
‖yC × zB‖2

, yB = zB × xB , zB =
T

‖T‖2
,

hω =
(...
r − (zB ·

...
r)zB

)
/‖T‖2.

Generating a trajectory for differentially flat systems reduces
to finding a sufficiently smooth flat output trajectory [32]. In
the case of system (1), the flat trajectory σ(t) needs to be at
least thrice-differentiable.

B. B-Spline Curves

B-splines are widely used to parameterize trajectories because
of their nice properties and ease of use. For example, the
smoothness of B-splines makes the differentiability constraint
of the flat trajectory σ(t) easy to satisfy and their convexity
properties allow one to explore state and input constraints in
continuous time.

Given a knot vector τ = (τ0, . . . , τv)
T satisfying τi ≤ τi+1

where i = 0, . . . , v − 1, a d-th degree B-spline basis with
d ∈ Z>0 is computed recursively as [39]:

λi,0(t) =

{
1, τi ≤ t < τi+1,

0, otherwise,

λi,d(t) =
t− τi

τi+d − τi
λi,d−1(t) +

τi+d+1 − t
τi+d+1 − τi+1

λi+1,d−1(t).

In this work, we consider the clamped, uniform B-spline basis,
which is defined over knot vectors satisfying:

(clamped) τ0 = . . . = τd, τv−d = . . . = τv, (4a)
(uniform) τd+1 − τd = . . . = τN+1 − τN , (4b)

where N = v − d− 1. A d-th degree B-spline curve s(t) is a
m-dimensional parametric curve built by linearly combining
control points Pi ∈ Rm(i = 0, . . . , N) and B-spline basis
functions of the same degree. Noting s(0)(t) = s(t), we
generate a B-spline curve and its r-th order derivative by:

s(r)(t) =

N∑
i=0

Pib
T
r,i+1Λd−r(t) = PBrΛd−r(t), (5)

where the control points are grouped into a matrix

P =
[
P0 . . . PN

]
∈ Rm×(N+1), (6)

the basis functions are grouped into a vector

Λd−r(t) = [λ0,d−r(t), . . . , λN+r,d−r(t)]
T ∈ RN+r+1, (7)

and bTr,i is the i-th row of a time-invariant matrix Br whose
construction is given in Appendix A.

Definition 1. The columns of P (r) , PBr are called the r-
th order virtual control points (VCPs) of s(t) and denoted as
P

(r)
i where i = 0, 1, . . . , N + r, i.e.,

P (r) = PBr =
[
P

(r)
0 . . . P

(r)
N+r

]
. (8)

4

Note that P (0) = P and that the first and last r columns of
P (r) are zero vectors because of the form of Br.

Some properties of B-splines that will be used in the following
sections are listed below (see [39], [40] for more details).

P1) Continuity. Given a clamped knot vector satisfying (4a),
s(t) is C∞ for any t /∈ τ and Cd−1 for any t ∈ τ .

P2) Convexity. The B-Spline basis functions have the “parti-
tion of unity” property, meaning that: (i) λi,d(t) ≥ 0 and
(ii)
∑N
i=0 λi,d(t) = 1, ∀t ∈ [τ0, τv).

P3) Local Support. Any B-spline basis is only nonzero over
a local set of knots: λi,d(t) 6= 0 iff t ∈ [τi, τi+d+1).

P4) Strong Convexity. Segments of the B-spline curve are
contained within the convex hull of a limited set of
control points. Combining each segment we obtain s(t) ∈⋃N
i=d Conv{Pi−d, . . . ,Pi}.

C. Control Barrier Functions

The concept of zeroing control barrier functions (CBFs) was
first proposed in [24], and has proven to be a powerful control
design method to ensure the safety (in the sense of controlled
invariance) of control affine systems [23], [41]. A provably
safe control law is generated by solving a CBF-QP online
[24]. In this work, we will use time-varying CBFs with relative
degree 2 and their control sharing property [42].

Consider a time-varying affine control system

ẋ = f(t,x) + g(t,x)u, (9)

where x ∈ Rn, u ∈ U ⊂ R and f : R × Rn → Rn,
g : R × Rn → Rn are piecewise continuous in t and
locally Lipschitz in x. Given a sufficiently smooth time-
varying function h(t,x) : R×Rn → R, we define the modified
Lie derivative of h(t,x) along f as L̄ifh , (∂∂t +Lf)ih where
i is a non-negative integer.

Definition 2. [42] Given a control system (9), a Cr function
h(t,x) : R × Rn → R with a relative degree r is called a
CBF if there exists a column vector a = (a1, . . . , ar)

T ∈ Rr
such that for all x ∈ Rn, t ≥ 0,

sup
u∈U

[
LgL̄

r−1
f h(t,x)u+ L̄rfh(t,x) + aT η(t,x)

]
≥ 0, (10)

where η(t,x) = (L̄r−1f h, L̄r−2f h, . . . , h)T ∈ Rr, and the roots
of pr0(λ) = λr + a1λ

r−1 + ...+ ar−1λ+ ar are negative reals
−λ1, ...,−λr < 0.

Define a series of functions:

ν0(t,x) = h(t,x), νk =
(d

dt
+ λk

)
νk−1, 1 ≤ k ≤ r. (11)

For any t ≥ 0,x ∈ Rn, define the set of admissible inputs
satisfying the CBF condition as Kh(t,x) , {u ∈ U |
LgL̄

r−1
f h(t,x)u+ L̄rfh(t,x) + aT η(t,x) ≥ 0}.

Lemma 1. [42] Given a control system (9), if 1) h(t,x)
with a relative degree r is a CBF such that (10) holds and
the roots of pr0(λ) = λr + a1λ

r−1 + ... + ar−1λ + ar are

−λ1, ...,−λr < 0, 2) νi defined in (11) satisfy νi(0,x0) ≥ 0
for i = 0, 1, ..., r − 1, then any controller u(t,x) ∈ Kh(t,x)
that is Lipschitz in x will render h(t,x) ≥ 0 for any t ≥ 0.

Given a control system (9) and q(q ≥ 2) CBFs hi(t,x), i =
1, ..., q, the control-sharing property of CBFs was proposed
in [42] to ensure the feasibility of the CBF-QP that includes
multiple CBF constraints. We refer the reader to Definition 2
in [42] for more detail.

D. Second-order Cone Constraints

A second-order cone program (SOCP) is a type of convex
optimization problem of the following form [43], [44]:

min. fTx

s. t. ‖Aix + bi‖2 ≤ cTi x + di, i = 1, . . . ,m,

where x ∈ Rn is the optimization variable, and the problem
parameters are f ∈ Rn, Ai ∈ R(ni−1)×n,bi ∈ Rni−1, ci ∈ Rn
and di ∈ R. Constraints of the form: ‖Ax+b‖2 ≤ cTx+d are
called second-order cone (SOC) constraints of dimension n.
Many commonly-seen convex constraints can be formulated as
SOC; for example, ellipsoidal constraints (xTQx ≤ r, Q � 0)
and polyhedral constraints (Ax ≤ b) [44]. SOCP encompasses
many types of important convex programs as special cases,
such as linear programs, convex QPs and convex quadratically
constrained QPs. SOCP can be solved in polynomial time
via the interior-point method and off-the-shelf solvers such
as MOSEK exist [45].

IV. CONTINUOUS-TIME SET INCLUSION OF B-SPLINE
CURVES & THEIR DERIVATIVES

In this section, continuous-time convex set inclusion of B-
spline curves and their derivatives will be considered. These
results provide an intuitive description of the strong convexity
property of B-spline curves and their derivatives, which is the
key to enforcing the continuous-time state and input constraint
satisfaction of quadcopter trajectories.

Lemma 2. The r-th derivative of a clamped B-spline curve
defined as in (5) is contained within the convex hull of its r-th
order virtual control points such that:

s(r)(t) ∈ Conv{P(r)
0 , . . . ,P

(r)
N+r}, t ∈ [τ0, τv). (12)

Furthermore, for d ≤ i ≤ N ,

s(r)(t) ∈ Conv{P(r)
i−d+r, . . . ,P

(r)
i }, t ∈ [τi, τi+1). (13)

By (13), condition (12) can be reduced to:

s(r)(t) ∈ Conv{P(r)
r , . . . ,P

(r)
N }, t ∈ [τ0, τv). (14)

Proof. Applying the definition of VCP to (5) we obtain
s(r)(t) = P (r)Λd−r(t) =

∑N+r
i=0 λi,d−r(t)P

(r)
i . Applying

P2) of B-splines shown in Section III-B, we determine
that s(r)(t) is a convex combination of r-th order VCPs,

5

which is equivalent to (12). Using P3) of B-splines we have∑i
j=i−d+r λj,d−r(t) = 1, t ∈ [τi, τi+1), d ≤ i ≤ N.

Leveraging this result, we can also write (5) as s(r)(t) =∑i
j=i−d+r λj,d−r(t)P

(r)
j ,∀t ∈ [τi, τi+1), d ≤ i ≤ N , which

is equivalent to (13). Taking the union of all nonempty knot
segments in the knot vector τ results in (14).

Proposition 1. Given a convex set S and the r-th derivative
of a clamped B-spline curve s(r)(t) defined as in (5), if

P
(r)
j ∈ S, j = r, . . . , N (15)

holds, then s(r)(t) ∈ S, t ∈ [τ0, τv). If

P
(r)
j ∈ S, j = i− d+ r, . . . , i, i ∈ {d, . . . , N} (16)

holds, then s(r)(t) ∈ S, t ∈ [τi, τi+1).

Proof. From (14) and the convexity property, it follows that
containing s(r)(t) in a convex set S for t ∈ [τ0, τv) can be
achieved by containing P

(r)
j in S for j = r, . . . , N . This

results in (15). Furthermore, containing s(r)(t) in S for a
nonempty time interval [τi, τi+1) reduces to containing d−r+1
rth order VCPs in S (i.e., those that form the convex hull in
(13)). This is equivalent with (16).

Remark 1. Proposition 1 above generalizes Proposition 1 in
[12] from an interval set inclusion to a more general convex
set inclusion. This will be key when considering spherical and
conic sets to ensure the safety of quadcopters as will be shown
in the following sections.

V. TRAJECTORY PLANNING WITH CONTINUOUS-TIME
SAFETY GUARANTEE

This section presents a SOCP framework to solve a safe
trajectory planning problem that includes various state and
input safety constraints, such that the reference trajectory
satisfies the safety constraints rigorously in the continuous-
time sense. Since the flat output ψ is irrelevant to the state
and input constraints considered in this paper, we set it to zero
and limit ourselves to finding a sufficiently smooth, position
flat output trajectory defined as r(t) = (x(t), y(t), z(t))T .

A. Encoding Safety Specifications as SOC Constraints

Consider the following state and input safety constraints that
must be satisfied rigorously for all t ∈ [τ0, τv):

x(t) ∈ Xp ∩ Xv ∩ Xξ, u(t) ∈ UT ∩ Uω, (17)

where the state x(t) and input u(t) are defined in (2), and
Xp,Xv,Xξ,UT ,Uω are the constraint sets for the position,
linear velocity, roll and pitch angles, total thrust, and angular
velocity, respectively. The procedure will be to formulate each
constraint in flat space and then use Proposition 1 to derive
sufficient conditions for (17). In Section V-C, we will discuss
how to use Proposition 1 to achieve obstacle avoidance by
satisfying local position constraints (called “safe corridors”)

over sub-intervals of [τ0, τv]. Apart from (17), we will also
consider waypoint constraints that have to be satisfied at
certain discrete times.

1) Position Constraints x ∈ Xp: The position constraint set
Xp encodes limited flight volumes as follows:

Xp = {x ∈ R9 | r ∈ Kp}, (18)

where Kp is a given SOC. Proposition 1 immediately provides
sufficient conditions for x(t) ∈ Xp, t ∈ [τ0, τv):

Pj ∈ Kp, j = 0, . . . , N. (19)

2) Linear Velocity Constraints x ∈ Xv: Limiting flight
velocities can reduce the risk of injury or equipment damage.
Consider the linear velocity constraint set defined as:

Xv = {x ∈ R9 : ‖ṙ‖2 ≤ v}, (20)

where v ≥ 0 denotes the bound of the maximal speed. Using
Proposition 1, the constraint x(t) ∈ Xv, t ∈ [τ0, τv) can be
formulated as a constraint on the 1-st order VCPs:∥∥P(1)

j

∥∥
2
≤ v, j = 1, . . . , N. (21)

3) Angular Constraints x ∈ Xξ: Providing bounds for the
roll and pitch angles can enhance system stability and improve
the accuracy of the dynamics model (1) by limiting aerody-
namic effects. This is especially relevant when implementing
controllers that leverage linearizations (e.g., LQR or linear
MPC) or small-angle approximations. Consider the angular
constraints set defined as follows:

Xξ = {x ∈ R9 : |φ|, |θ| ≤ ε}, (22)

where ε < π/2 is a given bound for the roll and pitch angles.
We begin by exposing the geometric meaning and convexity
of a result on quadcopter differential flatness from [46]. The
following lemma states that if the acceleration is contained in
a cone, then the roll and pitch angles are bounded regardless
of the yaw angle.

Lemma 3. Given a positive scalar 0 < ε < π/2, and the
following SOC:

Kε , {p ∈ R3 : ‖Aεp‖2 ≤ p3 + g}, (23)

where Aε = diag(cot ε, cot ε, 0), if the acceleration r̈(t) ∈ Kε,
then |φ(t)|, |θ(t)| ≤ ε regardless of the yaw angle ψ(t).

Proof. Let r̈(t) ∈ Kε and expand the SOC (23) to arrive at
ẍ2(t) cot2 ε + ÿ2(t) cot2 ε ≤ (z̈(t) + g)2. Let k1(t) , ẍ(t),
k2(t) , ÿ(t) and k3(t) , z̈(t) + g. Dividing the inequality
above by cot2 ε 6= 0 yields

(
k21(t) + k22(t)

)
/k23(t) ≤ tan2 ε.

Then, the conclusion follows from Proposition 2 in [46].

Using Lemma 3, the following result provides sufficient con-
ditions that are convex on the 2nd order VCPs P

(2)
i , such that

the angular constraint x(t) ∈ Xξ is satisfied for t ∈ [τ0, τv).

Lemma 4. Consider B-spline curve r(t) defined as in (5). If∥∥AεP(2)
j

∥∥
2
≤ zTWP

(2)
j + g, j = 2, . . . , N, (24)

6

holds with Aε given in Lemma 3, then x(t) ∈ Xξ,∀t ∈ [τ0, τv).

Proof. By Proposition 1, we have:∥∥Aεr(2)(t)∥∥2 ≤ zTW r(2)(t) + g, t ∈ [τ0, τv). (25)

Since condition (25) is equivalent to r̈(t) ∈ Kε with Kε given
as in (23), it follows from Lemma 3 that |φ(t)|, |θ(t)| ≤ ε,
∀t ∈ [τ0, τv), which means that x(t) ∈ Xξ,∀t ∈ [τ0, τv).

4) Thrust Constraints u ∈ UT : Upper-bounding the total
thrust is needed to prevent actuator saturation, while lower-
bounding the total thrust is common in aerospace systems for
soft-landing [47]. Consider the following thrust constraints set:

UT = {u ∈ R4 | T ≤ T ≤ T}, (26)

where T , T are given constants satisfying 0 ≤ T ≤ g ≤
T . The following lemma provides sufficient conditions that
are convex on the 2nd order VCPs P

(2)
i , such that the thrust

constraint u(t) ∈ UT is satisfied for t ∈ [τ0, τv).

Lemma 5. Consider B-spline curve r(t) defined as in (5). If∥∥P(2)
j + gzW

∥∥
2
≤ T , j = 2, . . . , N, (27a)

zTWP
(2)
j ≥ T − g, j = 2, . . . , N, (27b)

hold, then u(t) ∈ UT , ∀t ∈ [τ0, τv).

Proof. By Proposition 1, and expanding the norm shown in
(27a), we have:√

ẍ2(t) + ÿ2(t) +
(
z̈(t) + g

)2 ≤ T , t ∈ [τ0, τv), (28)

which constrains the acceleration to lie within a sphere in r̈
coordinates centered at (0, 0,−g). Note that by the flatness
map (3), (28) is equivalent to T (t) ≤ T , ∀t ∈ [τ0, τv). Next,
by Proposition 1, (27b) implies z̈(t) ≥ T − g, ∀t ∈ [τ0, τv),
which lower-bounds the z-component of acceleration. Thus,

T ≤
√
ẍ2(t) + ÿ2(t) +

(
z̈(t) + g

)2
= T (t) ≤ T holds for

t ∈ [τ0, τv). This completes the proof.

Remark 2. When the inequality T ≤ T (t) is expressed in
terms of the acceleration r̈(t) by (3), it signifies exclusion
from a spherical region. As a result, it is a nonconvex
constraint in terms of the B-spline control points. Such a
constraint was converted to a mixed-integer constraint in
[12], and its conservative relaxation was also considered
in [48]. The spherical region (28) is bigger than typical
quadcopter operation requires: the lower half (z̈ < −g) of
sphere (28) is accessed only when the quadcopter is “upside-
down” (|φ| ≥ π/2 or |θ| ≥ π/2) and this is only required
in very aggressive flights. The proof of Lemma 5 reveals that
some generally unused feasible region is sacrificed by lower-
bounding z̈(t) which results in a lower-bound for T (t).

5) Angular Velocity Constraints u ∈ Uω: Angular velocities
are the inputs to the quadcopter model considered and are
usually subject to saturation. Limits in angular velocities are
also desirable to ensure integrity of gyroscope data. Consider
the angular velocity constraints set defined as follows:

Uω = {u ∈ R4 : |p|, |q| ≤ ω}, (29)

where ω is a given bound for the angular velocities. Recall that
r(t) = 0 because of the assumption ψ(t) = 0. The following
lemma provides sufficient conditions that are convex on the
2nd order VCPs P

(2)
i and 3rd order VCPs P

(3)
i , such that

the angular velocity constraint u(t) ∈ Uω is satisfied for t ∈
[τ0, τv).

Lemma 6. Consider B-spline curve r(t) defined as in (5). For
any vector ζ = (ζ1, ..., ζN−d+1)T whose entries are positive
constants, if the following conditions:

zTWP
(2)
j ≥ ζl−d+1 − g, j = l − d+ 2, . . . , l, (30a)∥∥P(3)

j

∥∥
2
≤ ω ζl−d+1, j = l − d+ 3, . . . , l, (30b)

hold for l = d, . . . , N , then u(t) ∈ Uω, ∀t ∈ [τ0, τv).

Proof. By (16) from Proposition 1, we can establish

T (t) ≥ ζl−d+1, ‖
...
r (t)‖2 ≤ ω ζl−d+1, ∀t ∈ [τl, τl+1), (31)

which lower-bounds the thrust and upper-bounds the mag-
nitude of the jerk over the l-th knot sub-interval. Because
the entries of ζ are positive, we can combine inequalities to
write ‖...r (t)‖2/T (t) ≤ ‖...r (t)‖2/ζl−d+1 ≤ ω,∀t ∈ [τl, τl+1).
Examining the flat maps for p and q given in (3) and taking
the absolute value of both sides we have |p| = |−yB ·hω| and
|q| = |xB · hω|. Since xB and yB are unit vectors, we can
write |p|, |q| ≤ ‖hω‖2 by the definition of the dot product.
Furthermore, examining hω we note that the numerator is
a projection of the jerk to a plane perpendicular to the z̈-
axis which only reduces its norm, and that the denominator is
exactly the thrust T . In particular, |p(t)|, |q(t)| ≤ ‖hω(t)‖2 ≤
‖...r (t)‖2/T (t) ≤ ω holds for t ∈ [τl, τl+1). Taking l =
d, . . . , N and letting τ be a clamped knot vector satisfying
(4a) leads to |p(t)|, |q(t)| ≤ ω,∀t ∈ [τ0, τv), which completes
the proof.

6) Waypoint Constraints: Waypoint constraints are commonly
used for shaping the trajectory. Assume that there are nwp
waypoints pwp1 , . . . ,pwpnwp

∈ R3 near which the trajectory must
pass at certain discrete times ti, (i = 1, . . . , nwp). Specifically,
the following constrains are enforced for the position:

‖r(ti)− pwpi ‖2 ≤ dwp, i = 1, . . . , nwp, (32)

where dwp ≥ 0 is the desired radius indicating the closeness
of the trajectory to the waypoints. Note that the waypoint
constraints are exact when dwp = 0. Recalling that r(t)
is considered a B-spline curve, constraint (32) is a SOC
constraint in terms of its control points:∥∥PΛd(ti)− pwpi

∥∥
2
≤ dwp, i = 1, . . . , nwp. (33)

7

B. SOCP-based Safe Trajectory Planning

Suppose that the initial and final states x0,xf ∈ R9 are given
such that the trajectory must start at x0 and end at xf . This
is accomplished with the following constraints on the VCPs:

P0 = r0, PN = rf , (34a)

P
(1)
1 = ṙ0, P

(1)
N = ṙf , (34b)

P
(2)
2 = g(z0B − zW), P

(2)
N = g(zfB − zW), (34c)

where, z0B = (cosφ0 sin θ0,− sinφ0, cosφ0 cos θ0)T , zfB =
(cosφf sin θf ,− sinφf , cosφf cos θf)T , r0 = (x0, y0, z0)T ,
rf = (xf , yf , zf)T .

We minimize
∫ τv
τ0
‖r(4)(t)‖22dt where r(4)(t) denotes the

“snap” of the trajectory. By the flat map of the quadcopter,
minimizing the snap is equivalent to minimizing the input
effort [6]. Taking r(t) to be a B-spline curve constructed as
in (5), the (simple) objective is given as

Js(P0, . . . ,PN) =

∫ tf

t0

∥∥∥∥ N∑
i=0

Pib
T
d,4,i+1Λd−4(t)

∥∥∥∥2
2

dt,

where the decision variables are the control points P0, . . . ,PN

of the B-spline curve r(t). Examining (31), we observe that
it is desirable to make each entry ζk large to maximize the
feasible region. Therefore, we introduce ζ into the objective
function such that it is maximized. Specifically, the modified
objective function is chosen to be:

J(P0, . . . ,PN , ζ) = Js(P0, . . . ,PN)−
N−d+1∑
k=1

ζk. (35)

Noting that the VCPs are linear combinations of the control
points, we formulate the following SOCP to solve the safe
trajectory planning problem:

min.
P0,...,PN ,ζ

J(P0, . . . ,PN , ζ) (FLAT-SOCP)

s. t. (19), (21), (24), (27), (30), (33) and (34) hold,

where “FLAT” means that the solutions parameterize the flat
output trajectory σ(t) = (r(t), 0).

The trajectory in the flat space is defined by control points
generated from (FLAT-SOCP), and the corresponding state and
input trajectories are obtained by passing the flat trajectory
through the flat map (3). By Lemma 3, Lemma 4, Lemma
5 and Lemma 6, the resulting state and input trajectories of
the quadcopter satisfy all the safety constraints in continuous
time. This result is summarized in the following theorem.

Theorem 1. Suppose that (FLAT-SOCP) has a feasible solu-
tion P0, . . . ,PN . Let r(t) be a B-spline curve defined by the
control points P0, . . . ,PN . Then, the quadcopter state x(t)
and input u(t) trajectories, which are obtained from the flat
map (3) with σ(t) = (r(t), 0), satisfy the safety constraints
(17) for all t ∈ [τ0, τv).

Remark 3. Problem (FLAT-SOCP) can be relaxed to a QP
if one replaces the convex regions described by the cone

constraints in (FLAT-SOCP) with their polytopic inner ap-
proximations. For example, for the SOC constraint (27a), if
we find a polytopic inner approximation as follows: {r̈ ∈
R3 : AT r̈ ≤ bT } ⊂ {r̈ ∈ R3 : (28) holds}, then we can
replace the SOC constraint (27a) with the linear constraint
ATP

(2)
j ≤ bT (j = 2, . . . , N) in (FLAT-SOCP). Similar

replacements are possible for all SOC constraints.

Remark 4. The optimization problem (FLAT-SOCP) is based
on B-spline parameterization of the flat trajectory, which is
more convenient than the parameterization using piecewise
polynomials as in [6]. By property P1), the smoothness
requirement from the flatness map is satisfied automatically
by choosing d ≥ 4, without requiring additional smoothness
constraints as in [6] or objective function reformulation as
in [7]. Furthermore, the feasible region of (FLAT-SOCP)
may be enlarged at the expense of computational burden by
increasing N (number of control points), which must respect
v = N + d+ 1.

Remark 5. Constraint (30a) is compatible with (27a) and
(27b). When T is provided, it follows that T ≤ ζk ≤ T , k =
1, . . . , N − d+ 1. In fact, the present formulation may lower-
bound T (t) more tightly than required to expand the feasible
region for (31), but never so much that it violates the upper
bound. Additionally, while constraint (30) increases optimality
by expanding the feasible region, it comes at the expense of
computational cost. A possible compromise is by replacing
the vector ζ with a scalar ζω in the objective function (35)
and replacing constraint (30) with the global constraints:
zTWP

(2)
j ≥ ζω − g(j = 2, . . . , N) and

∥∥P(3)
j

∥∥
2
≤ ω ζω(j =

3, . . . , N).

C. Obstacle Avoidance in Continuous Time

In this subsection, we investigate how (FLAT-SOCP) can
be modified to achieve obstacle avoidance with a rigorous
continuous-time guarantee by leveraging the locality property
of B-splines. The safe flight space is usually nonconvex, which
makes the obstacle avoidance problem difficult [15]. Obstacle
avoidance with continuous-time safety guarantees was studied
in [14] where each obstacle is expressed as a polytope and
the trajectory planning problem is formulated as a mixed-
integer QP, which is an NP-hard problem and renders the
online trajectory re-planning computationally infeasible.

Suppose that the safe flight space F ⊂ R3 is a set defined
as F , R3 \ (O1 ∪ ... ∪ Ono

) where Oi ⊂ R3 denotes
an overapproximation of the i-th obstacle. Although F is
generally nonconvex, mild assumptions about the distribution
of the obstacles allow us to determine the existence of convex
subsets that altogether form a safe corridor in F for the
trajectory [49]. In practice, these convex subsets can be found
using sensors such as stereo cameras and lidars [50]. In this
paper, we assume that the overlapping convex sets of the safe
corridor are known (e.g., using methods in [49]–[52]) and can
be used for trajectory planning. The construction of these sets
is considered the task of a high-level planner and is out of the
scope of this work.

8

By utilizing the local property of B-spline curves, the follow-
ing results provides sufficient conditions so that the trajectory
remains in the safe corridor, which implies that the collision
avoidance is achieved in continuous time.

Proposition 2. Suppose that there exist ns overlapping convex
sets {S1, . . . ,Sns} inside the safe flight space, i.e., Sl ⊂
F , l = 1, . . . , ns, satisfying Si ∩Si+1 6= ∅, i = 1, . . . , ns− 1
and consider B-spline curve r(t) defined as in (5) with
N = ns + d− 1. If the following conditions hold:

Pj−1 ∈ Sl, j = l, . . . , l + d, l = 1, . . . , ns, (36)

then r(t) ∈ F for all t ∈ [τ0, τv) and r(t) is at least
Cd−1, ∀t ∈ [τ0, τv).

Proof. Applying Proposition 1 to the inclusion constraint of
the l-th group of control points results in r(t) ∈ Sl, t ∈
[τl+d−1, τl+d), which means that the l-th segment of the B-
spline curve r(t) is contained within Sl. Taking now l =
1, . . . , ns and recalling that we consider a clamped knot vector
(4a) results in r(t) ∈ F , t ∈ [τ0, τv). Further, note that
Sl∩Sl+1 6= ∅ allows r(t) to be continuous despite the segment-
wise constraints.

The constraints shown in (36) can be readily added to
(FLAT-SOCP) without compromising the problem structure if
the convex sets {Sl} are restricted to SOC forms, as will be
demonstrated in the experiments in Section VII.

Remark 6. Convex sets S1, . . . ,Sns
in Proposition 2 play

a significant role in the properties of the resulting B-spline
curve (such as the magnitude of its derivatives). The optimal
assignment of control points to each convex set remains an
open problem and is still under our investigation. Relevant
results include the time-optimality of trajectories generated
using safe corridors [51], [52].

Remark 7. In Section VI we will establish safety guarantees
for bounded reference position trajectory tracking in the
infinity-norm sense. This bound at the tracking level can be
incorporated when finding the sets {Sl} so that obstacle
avoidance is guaranteed also during tracking. Alternatively,
one can appropriately enlarge the size of obstacles {Oi}.

VI. TRAJECTORY TRACKING WITH CONTINUOUS-TIME
SAFETY GUARANTEE

In this section, we propose a trajectory tracking method for
quadcopters with position safety guarantees in continuous-
time. The idea is to use CBFs as a safety filter to guarantee
boundedness between the real trajectory and the nominal
safe trajectory rref(t) generated from (FLAT-SOCP). The safe
tracking controller is obtained by solving a convex QP on-
line, whose feasibility will be ensured by the control-sharing
property of multiple CBFs.

A. Quadcopter Model for Safe Trajectory Tracking

We assume now that the angular velocity dynamics are
regulated by some high-bandwidth controller and consider
the reduced state z = (rT , ṙT)T and input v = (T, ξT)T

subject to (1a). Then, we can consider a set of virtual inputs
µ = (µ1, µ2, µ3)T , (ẍ, ÿ, z̈)T found as in (1a):

µ = Ψ(v) , TzB − gzW . (37)

Note that the map is invertible if we recover the yaw angle
such that v = Ψ−1(µ, ψ) where Ψ−1 is given as:

T =
√
µ2
1 + µ2

2 + (µ3 + g)2 =
µ3 + g

cosφ cos θ
, (38a)

φ = arctan
(µ1 sinψ − µ2 cosψ

(µ3 + g) cos θ

)
, (38b)

θ = arctan
(µ1 cosψ + µ2 sinψ

µ3 + g

)
. (38c)

With the virtual inputs, the quadcopter dynamics becomes a
double-integrator [19], [27]:

ż(t) = f(z(t)) + g(z(t))µ(t) =

[
03 I3
03 03

]
︸ ︷︷ ︸

A

z(t) +

[
03

I3

]
︸︷︷ ︸
B

µ(t)

(39)

Assume that a reference state xref(t) and a reference input
uref(t) are generated as in Sec. V and note that we can
immediately extract zref(t) and vref(t) from them. The dy-
namic feasibility of the reference trajectory will be necessary
to establish the forthcoming results. Assume also a nominal
controller v = π(z) is given, which is potentially unsafe. In
the following subsection, a CBF-QP-based tracking controller
will be designed such that the real trajectory lies within a
prescribed tube of the nominal trajectory while the tracking
control is as close as possible to the nominal controller.

B. CBF-QP-based Safe Tracking Controller

Consider the following time-varying safe set:

Sh(t) = {z ∈ R6 : ‖r− rref(t)‖∞ ≤ δ}, t ∈ [τ0, τv), (40)

where δ > 0 represents the maximum allowable deviation in
each axis. That is, the trajectory is considered as safe if it is
within a safe tube of radius δ around the nominal trajectory.
Note that it is straightforward to generalize the following
results to having different maximum bounds for each axis.

To ensure z(t) ∈ Sh(t), ∀t ∈ [τ0, τv), we define the following
six candidate CBFs for q ∈ {x, y, z}:[

hq
hq

]
,

[
δ + qref(t)− q(t)
δ + q(t)− qref(t)

]
. (41)

Note that all functions hq, hq, q ∈ {x, y, z} have relative
degree 2. According to Definition 2, we choose constants
a1, a2 such that the roots of λ2 + a1λ + a2 are reals and
negative, and the CBF conditions of relative degree 2 are
satisfied for hq, hq,∀q ∈ {x, y, z}. For example, the CBF

9

condition for hx is LgL̄fhxµ+ L̄2
fhx + a1L̄fhx + a2hx ≥ 0,

which is equivalent to φ1xµ + φ2x ≤ 0, where φ1x = xTW and
φ2x = −ẍref(t) + a1

(
ẋ− ẋref(t)

)
+ a2

(
x− xref(t)− δ

)
.

Putting the six CBF conditions (for hx, hx, hy, hy, hz, hz),
which are all linear constraints on µ for fixed z, into a QP, and
choosing the objective function such that ‖Ψ(π(z)) − µ‖22 is
minimized, where Ψ(π(z)) yields the nominal virtual inputs,
we have the following CBF-QP:

min.
µ

‖Ψ
(
π(z)

)
− µ‖22 (CBF-QP)

s. t. φ1qµ+ φ2q ≤ 0,

φ1qµ+ φ2q ≤ 0, q ∈ {x, y, z},

where the virtual input µ is the decision variable, φ1q = qTW ,
φ2q = −q̈ref(t)+a1

(
q̇−q̇ref(t)

)
+a2

(
q−qref(t)−δ

)
, φ1q = −qTW

and φ2q = q̈ref(t)+a1
(
q̇ref(t)−q̇

)
+a2

(
qref(t)−q−δ

)
, with qW

representing the appropriate world-frame’s axis (see Figure 2).
Note that by the dynamic feasibility of the reference trajectory,
we can extract q̈ref(t) from żref(t) = Azref(t) + BΨ

(
vref(t)

)
for any t ∈ [τ0, τv).

The (CBF-QP) is convex and can be solved in polynomial-time
by QP solvers such as MOSEK [45] or OSQP [53]. Letting
µ∗(t) be the solution of (CBF-QP) for any (t, z) ∈ [τ0, τv)×
R6, the safe input to the quadcopter is then given as

vs(t) = Ψ−1
(
µ∗(t), ψ(t)

)
, (42)

where ψ(t) is recovered from v(t) = π
(
z(t)

)
. The following

theorem provides sufficient conditions that ensure the forward
invariance of the set Sh(t), which implies the assurance of the
safe trajectory tracking, as well as the feasibility of (CBF-QP).

Theorem 2. Consider the system given in (39). If constants
a1, a2 > 0 are chosen such that the roots of λ2 +a1λ+a2 are
negative reals−λ1,−λ2 < 0, then (CBF-QP) is feasible for all
(t, z) ∈ [τ0, τv)×R6. Furthermore, if ‖r(τ0)−rref(τ0)‖∞ ≤ δ,
‖ṙ(τ0)− ṙref(τ0) + λ1(r(τ0)− rref(τ0))‖∞ ≤ λ1δ, and µ∗(t)
from (CBF-QP) is locally Lipchitz in z, then the input vs(t)
will render ‖r(t)−rref(t)‖∞ ≤ δ for all t ∈ [τ0, τv). Therefore,
z(t) ∈ Sh(t) for all t ∈ [τ0, τv).

Proof. The candidate CBFs defined in (41) aim to ensure
qref(t)− δ , q(t) ≤ q(t) ≤ q(t) , qref + δ, for q ∈ {x, y, z}.
Recalling that µ = [µ1, µ2, µ3]T , the system model shown
in (39) is equivalent to ẍ = µ1, ÿ = µ2, z̈ = µ3. Thus,
the axes are decoupled which enable us to consider each axis
individually. It is easy to see that for q ∈ {x, y, z}, q−q = 2δ,
q̇ − q̇ = 0, and q̈ − q̈ = 0. Since a1, a2 > 0, we have
q̈ − q̈ + a1(q̇ − q̇) + a2(q − q) = 2a2δ > 0. Therefore,
condition (15) in Theorem 2 of [42] is satisfied, which implies
that hq, hq are control sharing barrier functions. It is easy to
see that functions hx, hx, hy, hy, hz, hz are all control sharing
barrier functions, which means that (CBF-QP) is feasible for
all (t, z) ∈ [τ0, τv) × R6. Since ‖r(τ0) − rref(τ0)‖∞ ≤ δ,
‖ṙ(τ0) − ṙref(τ0) + λ1

(
r(τ0) − rref(τ0)

)
‖∞ ≤ λ1δ, we have

|q(τ0)−qref(τ0)| ≤ δ, |q̇(τ0)−q̇ref(τ0)+λ1q(τ0)−λ1qref(τ0)| ≤
λ1δ, ∀q ∈ {x, y, z}, which is equivalent to hq(τ0) ≥ 0,

hq(τ0) ≥ 0 and ḣq(τ0)+λ1hq(τ0) ≥ 0, ḣq(τ0)+λ1hq(τ0) ≥ 0
for q ∈ {x, y, z}. Therefore, hq(t) ≥ 0, hq(t) ≥ 0 for
all t ∈ [τ0, τv) and q ∈ {x, y, z} by [42], which implies
that ‖r(t) − rref(t)‖∞ ≤ δ holds for t ∈ [τ0, τv). The final
conclusion follows by the definition of set Sh(t).

Remark 8. The safety guarantee provided by Theorem 2 is
predicated on the assumption that the control input gener-
ated by the (CBF-QP) can be updated continuously. When a
sampled-data controller is implemented in practice, it is still
possible to provide the same safety guarantee in continuous
time; please refer to [54] which proposed a real-time imple-
mentable, robust sampled-data CBF-QP-based controller.

For the trajectory obtained from (CBF-QP), we can also quan-
tify the upper bounds of ‖ṙ(t)− ṙref(t)‖∞ and ‖µ− r̈ref(t)‖∞
as shown in the following two corollaries.

Corollary 1. If the conditions of Theorem 2 are satisfied and
‖ṙ(τ0) − ṙref(τ0)‖∞ ≤ 2δa2/a1, then ‖ṙ(t) − ṙref(t)‖∞ ≤
2δa2/a1 holds for any t ∈ [τ0, τv).

Proof. Any feasible solution µ = (ẍ, ÿ, z̈)T of (CBF-QP)
satisfies q̈ ≤ q̈ref + a1(q̇ref − q̇) + a2(qref − q + δ) and
q̈ ≥ q̈ref + a1(q̇ref − q̇) + a2(qref − q − δ) for q ∈ {x, y, z}.
Define candidate CBFs ĥq(t) , q̇ref(t)− q̇(t) + 2δa2/a1 and
ĥq(t) , q̇(t)− q̇ref(t)+2δa2/a1. Since |q−qref| ≤ δ, we have
q̈ ≤ q̈ref + a1(q̇ref − q̇) + 2a2δ, q̈ ≥ q̈ref + a1(q̇ref − q̇)− 2a2δ.
These two inequalities are equivalent to ˙̂

hq(t) + a1ĥq(t) ≥ 0

and ˙̂
hq(t)+a1ĥq(t) ≥ 0, respectively for q ∈ {x, y, z} and any

t ∈ [τ0, τv). Therefore, ĥq and ĥq satisfy the CBF condition.
Furthermore, since ‖ṙ(τ0) − ṙref(τ0)‖∞ ≤ 2δa2/a1, we have
ĥq(τ0) ≥ 0 and ĥq(τ0) ≥ 0 for q ∈ {x, y, z}. Thus, ĥq(t) ≥ 0

and ĥq(t) ≥ 0 for t ∈ [τ0, τv) by [23], which implies that
|q̇ref(t) − q̇(t)| ≤ 2δa2/a1 for q ∈ {x, y, z} and t ∈ [τ0, τv).
The conclusion follows immediately.

Corollary 2. If the conditions of Theorem 2 are satisfied, then
the feasible solution µ of (CBF-QP) is bounded by ‖µ −
r̈ref(t)‖∞ ≤ 4δa2 for any t ∈ [τ0, τv).

Proof. Recall that ‖r(t) − rref(t)‖∞ ≤ δ by Theorem 2 and
‖ṙ(t) − ṙref(t)‖∞ ≤ 2δa2/a1 by Corollary 1. These bounds
allow us to bound the feasible set of (CBF-QP) by q̈ref(t) −
4δa2 ≤ q̈ ≤ q̈ref(t)+4δa2, where q ∈ {x, y, z}. Recalling that
µ = (ẍ, ÿ, z̈)T concludes the proof.

C. Input Constraints Satisfaction for the CBF-QP Controller

The thrust T , the roll angle φ, and the pitch angle θ are related
to the decision variable µ in (CBF-QP) through the relation
shown in (42). In this subsection, we will consider how the
safety constraints on T, φ, θ considered in Section V can be
respected by the CBF-QP-based tracking controller that filters
the nominal controller π(z). Specifically, we aim to guarantee
that vs(t) ∈ V where vs(t) is given in (42) and

V , VT ∩ Vξ, (43)

10

where VT = {v ∈ R4 | 0 ≤ T ≤ T} and Vξ = {v ∈ R4 :
|φ|, |θ| ≤ ε < π/2}. Note that the constraint vs(t) ∈ V is
important to ensure actuator saturation will not happen.

The following proposition presents sufficient conditions on the
trajectory such that the safe input vs(t) given in (42) respects
the constraints shown in (43).

Proposition 3. Consider the system given in (39) and suppose
that the conditions of Theorem 2 are satisfied. If trajectories
of the state zref(t) and the input vref(t) satisfy (1a) and the
following conditions hold for all t ∈ [τ0, τv):

0 ≤ T ref(t) ≤ T − 4
√

3δa2, (44a)

‖Aεr̈ref(t)‖2 ≤ z̈ref(t) + g − 4δa2(1 + | cot ε|
√

2), (44b)

with Aε = diag(cot ε, cot ε, 0), then vs(t) ∈ V with vs(t)
given in (42) and V given in (43).

Proof. Let µ∗(t) be the solution of (CBF-QP). By norm
equivalence, ‖µ − r̈ref(t)‖∞ ≤ 4δa2 in Corollary 2 implies
‖µ∗(t) − r̈ref(t)‖2 ≤

√
3‖µ∗(t) − r̈ref(t)‖∞ ≤ 4

√
3δa2 for

any t ∈ [τ0, τv).

Now consider the thrust element of vs(t) given as T (t) =
‖µ∗(t)+gzW ‖2 by the map Ψ−1. By (44a) we have T ref(t)+
4
√

3δa2 = ‖r̈ref(t) + gzW ‖2 + 4
√

3δa2 ≤ T . Therefore,
T (t) − T = ‖µ∗(t) + gzW ‖2 − T ≤ ‖µ∗(t) + gzW ‖2 −
‖r̈ref(t)+gzW ‖2−4

√
3δa2 ≤ ‖µ∗(t)−r̈ref(t)‖2−4

√
3δa2 ≤ 0,

Thus, T (t) ≤ T for t ∈ [τ0, τv). Note that r̈ref(t) can be
extracted from żref(t) which is given by dynamic feasibility
of the reference trajectory.

Next, we examine the roll φ(t) and pitch θ(t) elements of
vs(t). We drop the time-dependence of terms for convenience.
Let Kε be given as in (23). Note that∥∥∥∥[µ∗1µ∗2

]∥∥∥∥
2

≤
∥∥∥∥[µ∗1µ∗2

]
−
[
ẍref

ÿref

]∥∥∥∥
2

+

∥∥∥∥[ẍref

ÿref

]∥∥∥∥
2

≤ 4
√

2δa2 +

∥∥∥∥[ẍref

ÿref

]∥∥∥∥
2

, (45)

where the first inequality is from the triangle inequality
and the second inequality is from norm equivalence and
Corollary 2. Therefore, ‖Aεµ∗‖2 = | cot ε|

∥∥(µ∗1, µ
∗
2)T
∥∥
2
≤

4| cot ε|
√

2δa2 + ‖Aεr̈ref‖2 ≤ z̈ref− 4δa2 + g ≤ µ∗3 + g where
the first inequality is from (45) and the definition of Aε, the
second inequality is from (44b), and the third inequality is
from the fact that z̈ref ≤ µ∗3+4δa2, which can be derived from
|µ∗3 − z̈ref| ≤ 4δa2 by Corollary 2. Thus, µ∗(t) ∈ Kε and, by
Lemma 3, we have that |φ(t)|, |θ(t)| ≤ ε for all t ∈ [τ0, τv).
This completes the proof.

Remark 9. The conditions (44a)-(44b) for the reference
trajectory can be easily guaranteed in continuous-time with
the method presented in Section V, and (FLAT-SOCP) re-
mains convex. Intuitively, conditions (44a)-(44b) shrink the
cone (23) and the sphere (28) constraints on the trajectory
acceleration (see Figure 3) enough so that all feasible solu-
tions of (CBF-QP) satisfy the desired safety constraints when
transformed through the map Ψ−1. This means that, for any

ψ and any t ∈ [τ0, τv), the transformed optimal solution
vs(t) = Ψ−1

(
µ∗(t), ψ

)
∈ V .

Fig. 3. Conditions (44a)-(44b) shrink the cone that bounds the Euler angles
(xref(t) ∈ Xξ) and the sphere that bounds the thrust (uref(t) ∈ UT) to
guarantee that safe inputs vs(t) ∈ V . This figure shows the shrinkage with
typical bounds ε = 1.0472, T = 2g and the same safety parameters δ = 0.1,
a2 = 8 that we use in Examples 1, 3 and 4 in Sec. VII.

VII. SIMULATIONS & EXPERIMENTS

In this section, we use simulation and experimental examples
to demonstrate the effectiveness and versatility of the proposed
approach. For all experiments, (FLAT-SOCP) is solved in
MATLAB with Yalmip [55] and solver MOSEK [45] at a rate
of 30-100 Hz depending on its complexity, and (CBF-QP)
is solved in Python3 with OSQP [53] at a rate of 100 Hz.
The tracking data was obtained from an OptiTrack motion
capture system and filtered to obtain the state estimation by
using an Extended Kalman Filter. All online computations are
performed offboard in a basestation computer running Ubuntu
20.04 and ROS Noetic. The basestation is equipped with an
Intel i9 @ 3.70 GHz CPU and 16 Gb RAM. The control inputs
are sent to the Crazyflie2.1 over Crazyradio at an effective rate
of 100 Hz, while the onboard attitude control and estimation
are performed by Crazyflie2.1’s firmware. The video of the
experiments can be found in [56].

Example 1. This example demonstrates rigorous satisfaction
of the safety constraints in continuous-time by the SOCP-
based reference trajectory as well as the CBF-QP-based
tracking controller. First, we solve (FLAT-SOCP) to generate a
reference trajectory satisfying (17) where the following safety
constraints are required to be respected for all t ∈ [τ0, τv):

‖ṙref(t)‖ ≤ v, |φref(t)|, |θref(t)| ≤ ε,
T ≤ T ref(t) ≤ T , |pref(t)|, |qref(t)| ≤ ω.

The parameters of the trajectory and the safety constraints
are given in Table II, and the parameters of the waypoints
are given in Table III. With these parameters, we solve
(FLAT-SOCP) and show the resulting position trajectory
rref(t) in Figure 4 along with the waypoints and control points.
The geometry of the constraints enforced for the 2nd order

11

TABLE II
TRAJECTORY PARAMETERS FOR EXAMPLE 1

τ0 [s] 0 x0,xf [-] 09×1 ε [deg] 1.75

τv [s] 30 nwp 8 T [m/s2] 9.7

N [-] 40 dwp [m] 0.05 T [m/s2] 9.9

d [-] 5 v [m/s] 0.5 ω [deg/s] 1.5

TABLE III
TRAJECTORY WAYPOINTS FOR EXAMPLE 1

i 1 2 3 4 5 6 7 8

-0.15 -0.75 0.65 0.65 -0.5 -0.6 0.4 0.25
pwpi 0.25 0.6 -0.65 0.5 0.5 -0.6 -0.4 0.25

0.25 0.5 0.25 0.25 0.75 0.5 0.4 0.25

ti 4.5 7.8 12.6 15.3 18 21 24 27

Fig. 4. The position trajectory generated in Example 1 with the parameters in
Tables II and III. We show the position trajectory (dashed black) along with
the waypoints (red circles) and the control points (connected, blue circles).

VCPs P
(2)
j is shown in Figure 5, which can be interpreted

as follows: (i) Inclusion in the conic surface (red) given by
Kε defined in (23) to guarantee xref(t) ∈ Xξ; (ii) Inclusion in
the sphere (green) given by (27a) to guarantee upper-bounded
thrust T (t) ≤ T ; (iii) Restriction above hyperplane (cyan)
given by (27b) to guarantee lower-bounded thrust T ≤ T (t).
The safety constraint satisfaction is verified in Figure 6 by
transforming the flat output trajectory σref(t) = (rref(t), 0)
via (3) to the state xref(t) and input uref(t) trajectories.
From Figure 6, it can be observed that all considered safety
constraints are satisfied in continuous-time. It can be also
seen that the values of the vector ζ = (ζ1, ..., ζ36)T , which
is illustrated by the dashed, light red line, lower-bound the
thrust over local segments as defined in (30).

Next, we show that, when filtered through the (CBF-QP), a
nominal controller π(z) that is potentially unsafe can achieve
safe trajectory tracking with δ = 0.1 defined in (40). The
nominal tracking controller π can be arbitrarily chosen, but
in this example we choose π as an LQR controller with a
large input weight to minimize its actuation effort (i.e., power
consumption). We choose parameters a1 = 6, a2 = 8 and
compare the performance of the CBF-QP-based safe tracking

Fig. 5. Visualization of constraints enforced for the 2nd order VCPs P
(2)
j

in Example 1. Constraint (24) represents inclusion within the red cone.
Constraint (27a) is the inclusion within the green sphere (only cusp is shown).
Constraint (27b) forces the VCPs to lie above the cyan plane (global bound).
Note that the local counterpart (30a) is not depicted here. Note also that these
are not the only constraints added to (FLAT-SOCP) in Example 1.

0 10 20 30

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30

-2

-1

0

1

2

0 10 20 30

-2

-1

0

1

2

(a) State constraints. The velocity respects ‖ṙ(t)‖ ≤ 0.5 m/s and the
Euler angles respect |φ(t)|, |θ(t)| ≤ 1.75 deg for all t ∈ [0, 30).

0 10 20 30

9.7

9.75

9.8

9.85

9.9

0 10 20 30

-2

-1

0

1

2

0 10 20 30

-2

-1

0

1

2

(b) Input constraints. The thrust respects 9.7 m/s2 ≤ T (t) ≤ 9.9 m/s2
and the angular velocities respect |p(t)|, |q(t)| ≤ 1.5 deg/s. The light
red line indicates the values of the vector ζ = (ζ1, . . . , ζ36)T lower-
bounding the thrust over local segments as shown in (30).

Fig. 6. Verification that the safety constraints for state and inputs in Example
1 are satisfied in continuous-time.

12

controller and the unfiltered nominal controller in Figure 7.
As can be seen from the figure, the safe bounding constraints
are satisfied by the CBF-QP-based controller as CBFs defined
in (41) satisfy hq, hq ≥ 0 for q ∈ {x, y, z} for all time, while
these constraints are not respected by the nominal controller.

Example 2. In this example, we compare our SOCP-based
trajectory generation approach against three other existing
approaches: the flatness-based approach using piecewise poly-
nomials given in [6], the open-source optimal control solver
OpenOCL [30], and the approach based on motion primitives
[31]. We compare the four approaches in terms of solve time
and satisfaction of the safety constraints. For each approach,
we aim to generate a trajectory with the following parameters
and safety bounds, enforced as applicable: initial t0 = 0 and
final tf = 10 times; initial and final states x0 = xf = 09×1;
waypoint distance dwp = 0.05; maximum speed v = 1; angu-
lar bound ε = 7 degrees; thrust bounds T = 0 and T = 10.5;

(a) Tracking performance of the nominal LQR controller π(z) with
(blue) and without (magenta) the (CBF-QP).

0 10 20 30

-0.4

-0.2

0

0.2

0 10 20 30

-0.4

-0.2

0

0.2

0 10 20 30

0

0.05

0.1

0.15

0.2

0 10 20 30

0

0.2

0.4

0.6

0 10 20 30

0

0.2

0.4

0.6

0 10 20 30

0

0.05

0.1

0.15

0.2

(b) Measured values of functions hx, hx, hy , hy , hz , hz defined
in (41) when tracking with the filtered (blue) and unfiltered
(magenta) nominal controller π(z). The CBF-QP-based tracking
controller respects safety as the values of these functions are
always non-negative, which means that the real trajectory is within
the prescribed tube (δ = 0.1) around the nominal trajectory.
The nominal LQR tracking controller (magenta) violates safety
as hx(t, z(t)) < 0 and hy(t, z(t)) < 0 for some t.

Fig. 7. Performance comparison of the nominal tracking controller and the
CBF-QP-based safe tracking controller for Example 1.

and maximum angular speed ω = 30 degrees per second.
We also consider nwp = 4 waypoints: pwp1 = (0.6, 0.6, 0.4)T ,
pwp2 = (−0.6, 0.6, 0.5)T , pwp3 = (0.6,−0.6, 0.4)T and pwp4 =
(−0.6,−0.6, 0.5)T . All computations are done in MATLAB
except for the primitives [31] approach which is solved in
Python3. The computer for this example was a laptop PC
running Windows 10 with an Intel i5 @ 1.60 GHz CPU and
8 Gb RAM.

The specific setups for the four approaches are given as
follows. (i) For our SOCP-based approach, we choose d = 5
and N = 25. (ii) The flatness-based approach using piecewise
polynomials in [6] involves solving a QP in terms of the
polynomial coefficients. We augment this problem into a SOCP
to include all safety constraints, but we only enforce these
constraints at 25 discrete time instances evenly distributed in
the interval [τ0, τv]. The problem formulated remains convex
because all presented convex conditions with respect to the
(virtual) control points can be equivalently formulated with
respect to the polynomial coefficients. In addition, we consider
piecewise polynomials of degree 5 with 5 pieces. (iii) For
the OpenOCL-based approach [30], formulating an opti-
mal control problem for constrained trajectory generation is
straightforward. We choose parameter N = 59 and objective
function J =

∫ τv
τ0

(
T (t) − g

)2
+ ‖ω‖22 dt, and impose the

state and input constraints shown in (17) directly except for
Xv as OpenOCL was unable to handle this constraint. (iv)
For the motion primitives approach in [31], it focuses on
speed and does not admit any safety constraints at solve
time. The waypoint constraints are handled by generating
multiple trajectories and setting the start/end positions of each
trajectory at the relevant waypoints.

The resulting trajectories for each approach are shown in
Figure 8. The primitive-based approach is the fastest but
induces large safety violations. The flatness-based approach
using piecewise polynomials in [6] has similar performance
as our method but fails to provide continuous-time safety
guarantees (see the black rectangles in Figure 8 (b) and (c));
more importantly, the flantess-based approach using piecewise
polynomials in [6] can not handle all the safety constraints
considered in this paper out of the box and required modifi-
cations. The OpenOCL-based approach generates trajectories
that satisfy the safety constraints but is significantly slower
than other approaches.

Example 3. This example demonstrates the online replanning
capability of the proposed SOCP-based approach. We let the
quadcopter take off from a moving platform, fly through a hoop
located between two waypoints at low-speed, and then land in
the same moving platform. The platform is a Turtlebot driven
by a human, and its position is not known a priori but mea-
sured (by the motion capture system) online and utilized in the
SOCP-based trajectory generation. The reference trajectory is
recomputed by solving (FLAT-SOCP) in real-time, where the
initial and final positions of the reference trajectory are both
set to be the position of the moving platform. The tracking
controller is obtained by solving (CBF-QP) online. The safety

13

(a) The position trajectories with solve time displayed in seconds.

0 1 2 3 4 5 6 7 8 9 10

-10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10

-10

-5

0

5

10

(b) The roll φ and pitch θ trajectories. The black rectangles highlight
instances when the flatness-based approach using piecewise polynomials
in [6] fails to provide safety due to the constraints being enforced only
at discrete times.

0 5 10

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

0 5 10

-40

-20

0

20

40

0 5 10

-40

-20

0

20

40

(c) The input u trajectories.

Fig. 8. Trajectories obtained from the simulation of the four approaches
considered in Example 2.

specifications for the reference trajectory are:

rref(t) ∈ Sv, ‖ṙref(t)‖ ≤ v = 0.5, t ∈ [3, 6), (46a)

(a) Scenario for Example 3 showing the waypoints pwp1 and pwp2 with radius
dwp = 0.2, the position constraint set Sv to clear the hoop obstacle, and the
measured trajectories of the dynamic platform (i.e., p0f (t)) and Crazyflie2.1.
The quadcopter takes off near p0f (0) and lands near p0f (9), which is
accomplished by recomputing the reference trajectory rref(t).

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(b) Velocity profiles of all trajectories recomputed. Profiles computed at the
beginning of the experiment (t ≈ 0) are traced in light grey and those
computed at the end of the experiment (t ≈ 9) are traced in darker grey. All
computed reference trajectories satisfy the safety specification ‖ṙref(t)‖2 ≤
0.5 for t ∈ [3, 6). Also shown is the speed of the Crazyflie2.1 as it tracks
the evolving reference trajectory.

Fig. 9. Visualization of the experimental data for Example 3.

rref(0) = rref(9) = p0f (t), ṙref(0) = ṙref(9) = 0, (46b)

‖rref(2.5)− pwp1 ‖2 ≤ dwp, ‖rref(6.5)− pwp2 ‖2 ≤ dwp, (46c)

where p0f (t) is the position of the platform at time t,
pwp1 = (0.75, 0.6, 1.1)T and pwp2 = (−0.75, 0.6, 1.1)T are
the waypoints with desired radius dwp = 0.2, and the set
Sv is defined as Sv , {r ∈ R3 : ‖Asr + bs‖2 ≤ 1},
with As = diag(1.33, 13.3, 13.3) and bs = (0,−10,−14.7)T ,
which describes an ellipsoid centered at ph = (0, 0.75, 1.1)T

to ensure the quadcopter clears the hoop obstacle.

We begin by considering a B-spline curve rref(t) as defined
in (5) with N = 45, d = 5, τ0 = 0 and τv = 9. Including

14

(46b) and (46c) in (FLAT-SOCP) is straightforward. However,
(46a) indicates position and velocity bounds over a local time
interval and will result in constraints over a subset of the
control points and VCPs. Since τ is clamped and uniform, we
have that [3, 6) ∈ [τ18, τ33) = [2.85, 6.15). Using Proposition
1, we obtain the following constraints on the control points
and 1st order VCPs:

Pi ∈ Sv, i = 13, . . . , 32, ‖P(1)
j ‖2 ≤ v, j = 14, . . . , 32.

In the experiment, measurements of p0f (t) are obtained at 100
Hz and the convexity of (FLAT-SOCP) allows us to recompute
trajectories rref(t) satisfying (46) at 30Hz. The tracking is
done by a nominal controller π(z) filtered by (CBF-QP) with
parameters δ = 0.1, a1 = 6 and a2 = 8.

We implement this experiment using a Crazyflie2.1 nano
quadcopter and a Turtlebot 2 as the dynamic platform. Figure
9(a) shows the considered scenario, the quadcopter tracking
data and the measurements of p0f (t). The Crazyflie2.1 takes
off near p0f (0) and lands near p0f (9), by tracking the
reference trajectory rref(t), which is recomputed at 30Hz.
Additionally, we show the velocity profiles ‖ṙref(t)‖2 of the
reference trajectories in Figure 9(b). It can be seen that
all computed trajectories respect the bounded-velocity safety
specification ‖ṙref(t)‖2 ≤ 0.5 for all t ∈ [3, 6). We also show
the measured velocity magnitude of the quadcopter throughout
the experiment.

Example 4. The last example demonstrates safe trajectory
planning and tracking in a cluttered environment. The de-
finitions of the start/end zones C1, . . . , C4, cuboid obstacles
O1,O2, hoop O3, desk O4, ladder O5, safe flight space F ,
and the convex sets S1, . . . ,S6 (chosen as in Proposition 2)
are described in Appendix B. The environment configuration
is shown in Figure 10. We note that this environment was
setup and measured offline prior to the experiment; thus, the
quadcopter effectively has access to a “map” of its environ-
ment during trajectory replanning. We design trajectories that
avoid the obstacles and take the quadcopter from any p0 ∈ Ci
to any pf ∈ Cj such that rref(t) ∈ F for all t ∈ [t0, tf],
rref(t0) = p0 and rref(tf) = pf . Because of the choice
of convex sets {Sj}, given start zone Ci and end zone Cj ,
we can always find a finite sequence (ns < ∞) of indices
(k1, k2, . . . , kns

), kl ∈ {1, . . . , 6}, l = 1, . . . , ns such that
(Ci ∪ Sk1 ∪ Sk2 ∪ . . . ∪ Skns

∪ Cj) ⊂ F , Ci ∩ Sk1 6= ∅,
Skns

∩ Cj 6= ∅ and Skl ∩ Skl+1
6= ∅ with l = 1, . . . , ns − 1,

where i, j ∈ {1, . . . , 4} are the indices of the start zone
Ci and the end zone Cj , respectively. The sequence of sets
(Sk1 , . . . ,Skns

) satisfies the conditions of Proposition 2 and
we can use it to obtain constraints for (FLAT-SOCP) such
that its solution results in a B-spline curve rref(t) that safely
navigates the cluttered environment.

In the experiment, we set p0 ∈ Ci as the current position of the
quadcopter, and choose a random point pf ∈ Cj as the next
goal position where Cj ∈ {1, . . . , 4} is also randomly picked.
Then, we find a sequence of convex sets (Sk1 , . . . ,Skns

)
as above and obtain constraints for (FLAT-SOCP) from
Proposition 2. Finally, we solve the optimization problem

Fig. 10. Experimental setup of the cluttered environment and the trajectories
generated for Example 4. The designated takeoff/landing position is p1 ∈
C2. The other points pl, l = 2, . . . , 6 are chosen randomly from the zones
Ci, i = 1, . . . , 4. The sequence of points visited by the quadcopter is p1 ∈
C2,p2 ∈ C3,p3 ∈ C2,p4 ∈ C1,p5 ∈ C3,p6 ∈ C4,p1 ∈ C2. The reference
trajectories are shown in black and the real trajectory of the recorded tracking
data of the Crazyflie 2.1 quadcopter is shown in blue. We emphasize that
the trajectories were generated on-the-fly as each end point was drawn after
completing the tracking of the previous trajectory. The average solve-time
of (FLAT-SOCP) was 0.0135 seconds (see Remark 10). The supplementary
video is given in [56].

(FLAT-SOCP) and generate a reference trajectory. When the
quadcopter finishes tracking the trajectory using the CBF-QP-
based controller, the process is repeated for a new random
pf ∈ Ck, k ∈ {1, . . . , 4}. We repeat this process 6 times,
computing each trajectory on-the-fly. The result is a smooth,
continuous trajectory that safely navigates the cluttered envi-
ronment, shown in Figure 10. In the experiment, we forced the
last pf to match the takeoff location of the quadcopter. The
resulting sequence of points visited by the quadcopter was
p1 ∈ C2,p2 ∈ C3,p3 ∈ C2,p4 ∈ C1,p5 ∈ C3,p6 ∈ C4,p1 ∈
C2, and pl, l = 1, . . . , 6 are shown in Figure 10.

Remark 10. For experiments that require online replanning,
we use Yalmip’s optimizer objects to reduce the overhead
compiling time, which greatly improves solve time of para-
metric problems. Typical compile times for an optimizer

15

object of (FLAT-SOCP) are about 0.7 seconds and, as pre-
viously stated, any subsequent solving of the parameterized
(FLAT-SOCP) takes between 0.01 and 0.033 seconds.

VIII. CONCLUSIONS

We presented a convex optimization-based framework that
achieves rigorous continuous-time safety for the trajectory
planning and tracking of quadcopters. We also showed several
experimental examples that demonstrate the usefulness of
the presented framework. We highlight that the presented
trajectory optimization method can easily generalize to other
differentially flat systems, especially when geometric inter-
pretation of the flat-space constraints can be inferred. The
presented safe tracking approach can also generalize to other
control-affine mechanical systems. In future work, we will
explore customized solvers for the SOCP problem involved,
and incorporate high-level “safe corridor” finding algorithms
into the proposed framework. We also plan to extend the
proposed approach to real-world scenarios considering sensor
noise and external disturbances and to achieve perception-
based, safe navigation and tracking.

REFERENCES

[1] G. Rousseau, C. S. Maniu, S. Tebbani, M. Babel, and N. Martin,
“Minimum-time b-spline trajectories with corridor constraints. applica-
tion to cinematographic quadrotor flight plans,” Control Eng. Pract.,
vol. 89, pp. 190–203, 2019.

[2] L. Apvrille, T. Tanzi, and J.-L. Dugelay, “Autonomous drones for
assisting rescue services within the context of natural disasters,” in 31st
URSI Gen. Assem. Sci. Symp. (URSI GASS). IEEE, 2014, pp. 1–4.

[3] J. Navia, I. Mondragon, D. Patino, and J. Colorado, “Multispectral
mapping in agriculture: Terrain mosaic using an autonomous quadcopter
UAV,” in Int. Conf. Unmanned Aircr. Syst. (ICUAS). IEEE, 2016, pp.
1351–1358.

[4] S. Tang, V. Wüest, and V. Kumar, “Aggressive flight with suspended
payloads using vision-based control,” IEEE Rob. Autom. Lett., vol. 3,
no. 2, pp. 1152–1159, 2018.

[5] A. L. Dontchev, M. Huang, I. V. Kolmanovsky, and M. M. Nicotra,
“Inexact newton–kantorovich methods for constrained nonlinear model
predictive control,” IEEE Trans. Autom, Control, vol. 64, no. 9, pp.
3602–3615, 2018.

[6] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE Int. Conf. Rob. Autom. (ICRA), 2011,
pp. 2520–2525.

[7] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Robotics
Research. Springer, 2016, pp. 649–666.

[8] D. Dueri, Y. Mao, Z. Mian, J. Ding, and B. Açikmeşe, “Trajectory
optimization with inter-sample obstacle avoidance via successive con-
vexification,” in IEEE 56th Annu. Conf. Decis. Control (CDC), 2017,
pp. 1150–1156.

[9] Y. Mao, M. Szmuk, X. Xu, and B. Açikmese, “Successive convexi-
fication: A superlinearly convergent algorithm for non-convex optimal
control problems,” arXiv preprint arXiv:1804.06539, 2018.

[10] J. F. Bonnans and A. Festa, “Error estimates for the Euler discretization
of an optimal control problem with first-order state constraints,” SIAM
J. Numer. Anal., vol. 55, no. 2, pp. 445–471, 2017.

[11] A. L. Dontchev, “Error estimates for a discrete approximation to
constrained control problems,” SIAM J. Numer. Anal., vol. 18, no. 3,
pp. 500–514, 1981.

[12] F. Stoican, I. Prodan, D. Popescu, and L. Ichim, “Constrained trajectory
generation for UAV systems using a B-spline parametrization,” in 25th
Mediterr. Conf. Control Autom. (MED). IEEE, 2017, pp. 613–618.

[13] N. T. Nguyen, I. Prodan, and L. Lefèvre, “Flat trajectory design and
tracking with saturation guarantees: a nano-drone application,” Int. J.
Control, vol. 93, no. 6, pp. 1266–1279, 2020.

[14] F. Stoical, V.-M. Ivănuşcă, I. Prodan, and D. Popescu, “Obstacle
avoidance via B-spline parametrizations of flat trajectories,” in 24th
Mediterr. Conf. Control Autom. (MED). IEEE, 2016, pp. 1002–1007.

[15] L. Tang, H. Wang, Z. Liu, and Y. Wang, “A real-time quadrotor trajectory
planning framework based on B-spline and nonuniform kinodynamic
search,” J. Field Rob., vol. 38, no. 3, pp. 452–475, 2021.

[16] D. Invernizzi, M. Giurato, P. Gattazzo, and M. Lovera, “Comparison
of control methods for trajectory tracking in fully actuated unmanned
aerial vehicles,” IEEE Trans. Control Syst. Technol., vol. 29, no. 3, pp.
1147–1160, 2020.

[17] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor tra-
jectories using incremental nonlinear dynamic inversion and differential
flatness,” IEEE Trans. Control Syst. Technol., vol. 29, no. 3, pp. 1203–
1218, 2020.

[18] P. Foehn and D. Scaramuzza, “Onboard state dependent LQR for agile
quadrotors,” in IEEE Int. Conf. Rob. Autom. (ICRA), 2018, pp. 6566–
6572.

[19] M. Greeff and A. P. Schoellig, “Flatness-based model predictive control
for quadrotor trajectory tracking,” in IEEE/RSJ Int. Conf. Intell. Rob.
Syst. (IROS), 2018, pp. 6740–6745.

[20] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple
learning strategy for high-speed quadrocopter multi-flips,” in IEEE Int.
Conf. Rob. Autom. (ICRA), 2010, pp. 1642–1648.

[21] A. Singla, S. Padakandla, and S. Bhatnagar, “Memory-based deep
reinforcement learning for obstacle avoidance in UAV with limited
environment knowledge,” IEEE Trans. Intell. Transp. Syst., 2019.

[22] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” Adv.
Neural Inf. Process. Syst. (NeurIPS), vol. 2, pp. 909–919, 2018.

[23] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Trans. Autom. Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[24] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of
control barrier functions for safety critical control,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 54–61, 2015.

[25] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of
quadrotor dynamics using barrier certificates,” in IEEE Int. Conf. Rob.
Autom. (ICRA), 2018, pp. 2460–2465.

[26] D. Zheng, H. Wang, J. Wang, X. Zhang, and W. Chen, “Toward visibility
guaranteed visual servoing control of quadrotor UAVs,” IEEE/ASME
Trans. Mechatron., vol. 24, no. 3, pp. 1087–1095, 2019.

[27] B. Xu and K. Sreenath, “Safe teleoperation of dynamic UAVs through
control barrier functions,” in IEEE Int. Conf. Rob. Autom. (ICRA), 2018,
pp. 7848–7855.

[28] V. Cichella, I. Kaminer, C. Walton, and N. Hovakimyan, “Optimal
motion planning for differentially flat systems using Bernstein approxi-
mation,” IEEE Control Syst. Lett., vol. 2, no. 1, pp. 181–186, 2017.

[29] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and
control,” IFAC Proc. Vol., vol. 44, no. 1, pp. 1485–1491, 2011.

[30] J. Koenemann, G. Licitra, M. Alp, and M. Diehl, “OpenOCL–open
optimal control library,” 2017.

[31] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient
motion primitive for quadrocopter trajectory generation,” IEEE Trans.
Rob., vol. 31, no. 6, pp. 1294–1310, 2015.

[32] M. J. Van Nieuwstadt and R. M. Murray, “Real-time trajectory gener-
ation for differentially flat systems,” Int. J. Robust Nonlinear Control:
IFAC-Affiliated Journal, vol. 8, no. 11, pp. 995–1020, 1998.

[33] H. Nguyen, M. Kamel, K. Alexis, and R. Siegwart, “Model predictive
control for micro aerial vehicles: A survey,” in Eur. Control Conf. (ECC).
IEEE, 2021, pp. 1556–1563.

[34] D. Malyuta, Y. Yu, P. Elango, and B. Açıkmeşe, “Advances in trajectory
optimization for space vehicle control,” Annu. Rev. Control, vol. 52, pp.
282–315, 2021.

[35] L. Campos-Macı́as, D. Gómez-Gutiérrez, R. Aldana-López, R. de la
Guardia, and J. I. Parra-Vilchis, “A hybrid method for online trajectory
planning of mobile robots in cluttered environments,” IEEE Rob. Autom.
Lett., vol. 2, no. 2, pp. 935–942, 2017.

[36] “PX4 open source project.” [Online]. Available: https://docs.px4.io/
main/en/

[37] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: introductory theory and examples,” Int. J. Control,
vol. 61, no. 6, pp. 1327–1361, 1995.

[38] D. Zhou and M. Schwager, “Vector field following for quadrotors using
differential flatness,” in IEEE Int. Conf. Rob. Autom. (ICRA), 2014, pp.
6567–6572.

[39] C. De Boor and C. De Boor, A Practical Guide to Splines. Springer-
Verlag New York, 1978, vol. 27.

16

[40] F. Suryawan, “Constrained trajectory generation and fault tolerant con-
trol based on differential flatness and B-splines,” Ph.D. dissertation, The
University of Newcastle, Australia, 2012.

[41] X. Xu, J. W. Grizzle, P. Tabuada, and A. D. Ames, “Correctness
guarantees for the composition of lane keeping and adaptive cruise
control,” IEEE Trans. Autom. Sci. Eng., vol. 15, no. 3, pp. 1216–1229,
2018.

[42] X. Xu, “Constrained control of input–output linearizable systems using
control sharing barrier functions,” Automatica, vol. 87, pp. 195–201,
2018.

[43] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications
of second-order cone programming,” Linear Algebra and its Appl, vol.
284, no. 1-3, pp. 193–228, 1998.

[44] F. Alizadeh and D. Goldfarb, “Second-order cone programming,” Math.
Program., vol. 95, no. 1, pp. 3–51, 2003.

[45] MOSEK, The MOSEK optimization toolbox for MATLAB manual.
Version 9.3, 2021.

[46] N. T. Nguyen, I. Prodan, and L. Lefèvre, “Effective angular constrained
trajectory generation for thrust-propelled vehicles,” in Eur. Control Conf.
(ECC). IEEE, 2018, pp. 1833–1838.

[47] B. Açıkmeşe and L. Blackmore, “Lossless convexification of a class of
optimal control problems with non-convex control constraints,” Auto-
matica, vol. 47, no. 2, pp. 341–347, 2011.

[48] M. W. Mueller and R. D’Andrea, “A model predictive controller for
quadrocopter state interception,” in Eur. Control Conf. (ECC). IEEE,
2013, pp. 1383–1389.

[49] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online safe trajectory generation
for quadrotors using fast marching method and bernstein basis polyno-
mial,” in IEEE Int. Conf. Rob. Autom. (ICRA), 2018, pp. 344–351.

[50] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Auton. Rob., vol. 34, pp. 189–206, 2013.

[51] G. Tang, W. Sun, and K. Hauser, “Time-optimal trajectory generation
for dynamic vehicles: A bilevel optimization approach,” in IEEE/RSJ
Int Conf. Intell. Rob. Syst. (IROS), 2019, pp. 7644–7650.

[52] W. Sun, G. Tang, and K. Hauser, “Fast UAV trajectory optimization
using bilevel optimization with analytical gradients,” in Am. Control
Conf. (ACC). IEEE, 2020, pp. 82–87.

[53] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
an operator splitting solver for quadratic programs,” Math. Program.
Comput., vol. 12, no. 4, pp. 637–672, 2020.

[54] Y. Zhang, S. Walters, and X. Xu, “Control barrier function meets
interval analysis: Safety-critical control with measurement and actuation
uncertainties,” Am. Control Conf. (ACC), pp. 3814–3819, 2022.

[55] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
matlab,” in Proc. Comput. aided Control Syst. Des. (CACSD), Taipei,
Taiwan, 2004.

[56] UW ARC Lab, “Supplementary video,” https://xu.me.wisc.edu/
wp-content/uploads/sites/1196/2021/10/continuous-safety.mp4, 2021.

APPENDIX

A. Construction of Matrix Br

The matrix Br ∈ R(N+1)×(N+r+1) is only defined when
0 ≤ r ≤ d, and can be computed from two matrices Md,d−r
and Cr such that Br = Md,d−rCr; see [40] for more details.
The matrix Md,d−r ∈ R(N+1)×(N−r+1) can be constructed
recursively by:

Md,d−r =

{
IN+1, r = 0,∏r
i=1 fM (τ , d,N, i), 1 ≤ r ≤ d,

where each iteration in the product is a right-multiplication
and the matrix-valued function fM : Rv+1×Z>0×N×N→
R(N−i+2)×(N−i+1) is defined as

fM (τ , d,N, i) =


−a0 . . . 0

a0
. . .

...
...

. . . −aN−i
0 . . . aN−i

 ,

where ak = (d−i+1)/(τk+d+1−τk+i). The matrix Cr is con-
structed as Cr =

[
0(N+1−r)×r IN+1−r 0(N+1−r)×r

]
∈

R(N−r+1)×(N+r+1) for r ∈ Z>0 and C0 = IN+1.

B. Configuration of the Environment for Example 4

Zones C1, . . . , C4 are defined by Ci , {r | Ar ≤ bci} where
A =

[
I3 −I3

]T
,bc1 = (1, 0.3, 1.5,−0.6, 0.1, 0)T ,bc2 =

(−0.6, 0.6, 1.5, 1,−0.35, 0)T ,bc3 = (−0.6,−0.4, 1.5, 1, 1, 0)T

and bc4 = (1,−0.4, 1.5,−0.6, 1, 0)T . Obstacles O1,O2 are
defined by Oi , {r | Ar ≤ boi }, i = 1, 2, where A is
the same as above, bo1 = (0.5, 0.6, 0.7, 0.1,−0.15, 0)T , and
bo2 = (0.1,−0.225, 1.1, 0.1, 0.15, 0)T . The obstacle O3 is a
hoop centered at (0, 0, 1.1) through which the quadcopter can
pass; the obstacle O4 is a desk between C2 and C3 so that the
quadcopter must fly above or below the desk to avoid it; the
obstacle O5 a ladder between C3 and C4 so that the quadcopter
must fly between two of its rungs. The safe flight space is
defined as F = {r | (−1,−1, 0)T ≤ r ≤ (1, 0.6, 1.5)T } \
(O1 ∪ · · · ∪ O5). The six convex sets of the safe corridor are
chosen as Sj , {r | Ar ≤ bsj}(j = 1, . . . , 5) where A is the
same as above, bs1 = (−0.55, 0.4, 0.5, 0.9, 0.6,−0.2)T , bs2 =
(−0.55, 0.4, 1.3, 0.9, 0.6,−0.85)T , bs3 = (0.8,−0.45, 1.3,
0.8, 0.65,−1.2)T , bs4 = (0.8,−0.45, 0.47, 0.8, 0.65,−0.37)T ,
bs5 = (0.9, 0, 1.3,−0.7, 0.5,−1.15)T , and S6 , {r | ‖As6r +
bs6‖ ≤ 1} with As6 = diag(1.33, 13.3, 13.3) and bs6 =
(−0.067, 0,−14.67)T .

