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Abstract

Neural networks have become increasingly popular in controller design due to their versatility and efficiency. However, their
integration into feedback systems can pose stability challenges, particularly in the presence of uncertainties. This work addresses
the problem of certifying robust stability in neural network control systems with interval matrix uncertainties. Leveraging
classical robust stability techniques and the quadratic constraint-based method to characterize the input-output behavior of
neural networks, we derive novel robust stability certificates formulated as linear matrix inequalities. To reduce computational
complexity, we introduce three relaxed sufficient conditions and establish their equivalence in terms of feasibility. Additionally,
we explore their connections to existing robust stability results. The effectiveness of the proposed approach is demonstrated
through inverted pendulum and mass-spring-damper examples.
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1 Introduction

Neural Networks (NNs) are widely used in controller de-
sign for various dynamical systems because of their uni-
versal approximation capabilities [7,11,23,28,32]. How-
ever, Neural Network Control Systems (NNCSs), which
are feedback systems with NN controllers in the loop,
often lack formal stability guarantees due to the com-
plex nature of NNs. This issue is even more critical when
dealing with uncertainties in system models, as NNs are
known to be sensitive to perturbations [8]. As a result,
it is essential to certify the properties of NNCSs such as
stability and safety before deploying them in practical
applications.

Recently, there has been a growing interest in ad-
dressing the stability verification problem of NNCSs.
Various methods have emerged to certify the stability
by constructing candidate Lyapunov functions, either
through optimization techniques [6,16,22,28] or self-
supervised learning approaches [4]. In recent works such
as [5,7,12,14,24,30,31], Quadratic Constraints (QCs)
were utilized in analyzing NNs by abstracting nonlinear
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Fig. 1. Neural network control system that contains a plant
with interval matrix uncertainties and a NN controller π.

activation functions. This approach enables the for-
mulation of safety verification and robustness analysis
for NNs against norm-bounded perturbations as semi-
definite programs [7]. For NNCSs without uncertainties,
QCs were also used for forward reachability analysis [12]
and stability analysis [14,31]. When uncertainties exist
in the system dynamics, the QC-based methodology
was further applied to the robust stability analysis of
NNCSs incorporating perturbations that align with In-
tegral Quadratic Constraints (IQCs) [5,30]. Along this
line, an improved stability analysis via acausal Zames-
Falb multipliers was considered in [24], which offers en-
hanced stability assurances and the potential for larger
Regions Of Attraction (ROAs). These existing results
are important but they all require the uncertainties to
be represented by IQCs, which limits their application
to other commonly used uncertain system models.
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In this work, we consider the problem of verifying the
robust stability of NNCSs with interval matrix uncer-
tainties (see Fig. 1). For conventional systems without
NN components, there exists a substantial body of work
addressing robust stability in the presence of uncertain-
ties, such as [25,26]. The readers may refer to [27] and
the references therein, for additional pointers to the rel-
evant literature. In the case of linear systems with inter-
val matrix uncertainties, various necessary and sufficient
conditions were developed in the form of Linear Matrix
Inequalities (LMIs) [1,2,18]. Although [1] offers a con-
cise comparison of the performance of different sufficient
conditions, a clear connection among the LMI conditions
remains to be fully explored. Leveraging insights from
these classic robust stability results for systems without
NN components and the recent advances in QC-based
techniques for NN controllers, we introduce novel and
efficient methods to certify the robust stability of uncer-
tain NNCSs.

The contributions of this work are at least threefold: (i)
By using the QC-based abstraction techniques and the
vertices of the interval matrix uncertainties, a certificate
is formulated as a finite number of LMIs to verify sta-
bility and approximate the ROAs of uncertain NNCSs;
(ii) To reduce the computation burden associated with
solving the LMIs, three relaxed sufficient LMI condi-
tions are proposed featuring fewer numbers of decision
variables and smaller sizes of LMI constraints; (iii) The
equivalence of feasibility among the three relaxed LMIs
is established, and their connections with existing robust
stability results for interval matrix uncertainties are also
built. The remainder of this paper is laid out as follows:
Section 2 presents the problem formulation and prelimi-
naries on stability analysis for nominal NNCSs. Section
3 introduces a sufficient stability condition for uncer-
tain NNCSs in the form of LMIs, which is then relaxed
into three LMIs with fewer computation complexities in
Section 4. Section 5 features two numerical simulations,
followed by concluding remarks in Section 6.

Notation: The i-th entry of a vector x ∈ Rn is denoted
by xi with i ∈ [[n]], where [[n]] ≜ {1, . . . , n}. For a ma-
trix A ∈ Rn×m, A(i, j) denotes the i-th row and j-th
column entry of A. Given a square matrix A ∈ Rn×n,
we denote the (i, j) cofactor of A as CA

i,j and the min-
imum eigenvalue of A as λmin(A). The n × n identity
matrix is denoted as In and eni is the i-th column of
In. The n × m matrix whose entries are all 0 (resp.,
1) is denoted as 0n×m (resp., 1n×m); we may omit the
subscripts when the dimensions are evident from the
context. The sets of symmetric matrices, positive semi-
definite matrices, and positive definite matrices are de-
noted as Sn, Sn⪰0, and Sn≻0, respectively. The set of non-
negative vectors is denoted as Rn

≥0. The notation ≥ and
≤ are used to denote the entry-wise relationship of ma-
trices and vectors with appropriate dimensions. Given
matrices A,A ∈ Rn×m with A(i, j) ≤ A(i, j) for any
i ∈ [[n]] and j ∈ [[m]], the interval matrix [A,A] is defined

as [A,A] ≜ {A ∈ Rn×m|A(i, j) ≤ A(i, j) ≤ A(i, j),∀i ∈
[[n]],∀j ∈ [[m]]}. The set of vertices of an interval ma-

trix is defined as vertex([A,A]) ≜ {A ∈ Rn×m|A(i, j) =
A(i, j) or A(i, j),∀i ∈ [[n]],∀j ∈ [[m]]}. The symbol ∗ de-
notes entries whose values follow from symmetry.

2 Preliminary

2.1 Problem statement

In this paper, we consider the following discrete-time
linear system with interval matrix uncertainties:

x(t+ 1) = Adx(t) +Bdu(t) (1)

where x(t) ∈ Rn, u(t) ∈ Rm denote the state and the
control input, respectively. The system matrices Ad, Bd

are subject to interval matrix uncertainties with known
lower and upper bounds:

Ad ∈ [Ad, Ad] ⊂ Rn×n, Bd ∈ [Bd, Bd] ⊂ Rn×m. (2)

The system described by (1) with interval matrix un-
certainties (2) can be utilized in many practical applica-
tions where uncertainties arise from unpredictable fac-
tors such as measurement errors, environmental distur-
bances, and variability in plant characteristics. Exam-
ples include robust aircraft control under varying operat-
ing conditions with uncertain aerodynamic coefficients,
automotive control systems coping with tire parameter
variations due to wear and tear, and robotic manipu-
lators dealing with uncertainties in joint stiffness and
damping coefficients.

Let A0 = 1
2 (Ad + Ad), Ar = 1

2 (Ad − Ad) and B0 =
1
2 (Bd + Bd), Br = 1

2 (Bd − Bd). Then, similar to [18],
the matrices Ad and Bd can be expressed as

Ad = A0 +

n∑
i,j=1

eni fij(e
n
j )

⊤
, (3)

Bd = B0 +

n∑
i=1

m∑
j=1

eni gij(e
m
j )

⊤
, (4)

with fij ∈ R, |fij | ≤ Ar(i, j) and gij ∈ R, |gij | ≤
Br(i, j). The controller u(t) is given as

u(t) = π(x(t)) (5)

where π : Rn → Rm is a known ℓ-layer Feedforward
Neural Network (FNN) defined as follows:

w0(t) = x(t),

wi(t) = ϕi
(
W iwi−1(t) + bi

)
, ∀i ∈ [[ℓ]],

u(t) = W ℓ+1wℓ(t) + bℓ+1.

(6)

Here wi ∈ Rni (i ∈ [[ℓ]]) is the output (activation) from
the ith layer. For each layer, the operations are defined by
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a weight matrix W i ∈ Rni×ni−1 , a bias vector bi ∈ Rni ,
and an activation function ϕi : Rni → Rni given as

ϕi(v) ≜ [φ (v1) , · · · , φ (vni)]
⊤

(7)

where φ : R → R is a scalar activation function (e.g.,
ReLU, sigmoid, tanh, leaky ReLU). Although in this
work we assume φ is identical in all layers, the results
can be easily extended to the case where different acti-
vation functions exist across different layers with minor
notation changes, as long as all involved activation func-
tions satisfy the sector-bounded properties and can be
abstracted using QCs as detailed in the next subsection.

The uncertain NNCS consisting of system (1) and con-
troller (5) is a closed-loop system denoted as

x(t+1) = Adx(t) +Bdπ(x(t))

where Ad ∈ [Ad, Ad], Bd ∈ [Bd, Bd].
(8)

We assume x ∈ X where X ⊂ Rn is called the state
set. We also assume the FNN satisfies π(0) = 0, which
ensures that x∗ = 0 is an equilibrium point of the un-
certain NNCS (8), i.e.,

x∗=Adx∗+Bdπ(x∗),∀Ad∈ [Ad, Ad],∀Bd∈ [Bd, Bd]. (9)

Given an initial state x0, X (t, x0, Ad, Bd) denotes the
solution of the uncertain NNCS (8) at time t with Ad ∈
[Ad, Ad] and Bd ∈ [Bd, Bd].

In this work, we aim to solve the following problem:
Given the uncertain NNCS (8) comprised of the discrete-
time linear system (1) with interval matrix uncertainties
(2) and the controller (5) represented by an ℓ-layer FNN
(6), develop efficient conditions for verifying its local ro-
bust stability around the equilibrium point at the origin.

2.2 Stability of nominal NNCS

In this section, we review the stability result for nominal
NNCSs given in [30]. It is useful to isolate the nonlinear
activation functions from the linear operations of the NN
as done in [7], [17], and [30]. Define vi as the input to
the activation function ϕi:

vi(t) ≜ W iwi−1(t) + bi, ∀i ∈ [[ℓ]]. (10)

Define the concatenated forms of the inputs vϕ ∈ Rnϕ

and outputs wϕ ∈ Rnϕ of all activation functions, as
well as the combined nonlinearity ϕ : Rnϕ → Rnϕ , re-
spectively, as

vϕ ≜


v1

...

vℓ

 , wϕ ≜


w1

...

wℓ

 , ϕ (vϕ) ≜


ϕ1

(
v1

)
...

ϕℓ
(
vℓ
)
 (11)

where nϕ ≜
ℓ∑

i=1

ni. The scalar activation function φ as

shown in (7) is applied element-wise to each entry of vϕ.
Then the output wϕ(t) can be expressed compactly as

wϕ(t) = ϕ (vϕ(t)) . (12)

The controller π defined in (6) and vϕ,wϕ defined in
(11)-(12) can be rewritten as

[
vϕ(t)

u(t)

]
= N


x(t)

wϕ(t)

1

 (13)

where

N =



W 1 0 · · · 0 0 b1

0 W 2 · · · 0 0 b2

...
...

. . .
...

...
...

0 0 · · · W ℓ 0 bℓ

0 0 0 · · · W ℓ+1 bℓ+1


≜

Nvx Nvw Nvb

Nux Nuw Nub

 .

The equilibrium point x∗ = 0 can be propagated
through the FNN (6) to obtain equilibrium values
vi
∗,w

i
∗ (i ∈ [[ℓ]]) for the inputs and outputs of each acti-

vation function, yielding vϕ = v∗,wϕ = w∗ and u∗ = 0.
Then, by construction, (x∗,u∗,v∗,w∗) are unique and
satisfy the following conditions for all Ad ∈ [Ad, Ad],
Bd ∈ [Bd, Bd]:

x∗=Adx∗+Bdu∗,

[
v∗

u∗

]
=N


x∗

w∗

1

 , w∗=ϕ (v∗) . (14)

Although system (8) may have equilibrium points other
than x∗ = 0, we focus on its robust stability around the
origin x∗ = 0 in this work.

The nonlinearities of the FNN π imposed by the acti-
vation function can be abstracted using QCs [7,19,29].
A list of QCs encoding various properties of activation
functions can be found in [7]. To simplify the stability
analysis of the uncertain NNCS (8), we use QCs to ab-
stract the sector-bounded properties of the activation
function around the equilibrium point.

Definition 1 [7,30] Let α, β, v, v, v∗ ∈ R be given with
α ≤ β and v ≤ v∗ ≤ v. The function φ : R → R is
locally sector-bounded in the sector [α, β] around the point
(v∗, φ (v∗)) if (∆φ(v)−α∆v) · (∆φ(v)−β∆v) ≤ 0,∀v ∈
[v, v], where ∆φ(v) ≜ φ(v)− φ (v∗) and ∆v ≜ v − v∗.
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The sectors can be stacked into vectors αϕ,βϕ ∈ Rnϕ

that provide QCs satisfied by the combined nonlinearity
ϕ.

Lemma 1 [30, Lemma 1] Let αϕ,βϕ,v,v,v∗ ∈ Rnϕ be

given with αϕ ≤ βϕ, v ≤ v∗ ≤ v, and w∗ ≜ ϕ (v∗).
Assume ϕ is locally sector-bounded in the sector [αϕ,βϕ]
around the point (v∗,w∗) entry-wise for all vϕ ∈ [v,v].
For any λ ∈ Rnϕ

≥0 and vϕ ∈ [v,v], it holds that

[
vϕ − v∗

wϕ −w∗

]⊤

Ψ⊤
ϕMϕ(λ)Ψϕ

[
vϕ − v∗

wϕ −w∗

]
≥ 0

where wϕ = ϕ (vϕ) and

Ψϕ=

[
diag (βϕ) −Inϕ

−diag (αϕ) Inϕ

]
,Mϕ(λ)=

[
0nϕ×nϕ

diag(λ)

diag(λ) 0nϕ×nϕ

]
.

In order to apply Lemma 1, we assume the bounds v,v ∈
Rnϕ on the activation input vϕ are given (see, e.g., [9]).

The following lemma provides a sufficient stability con-
dition for the nominal NNCS (8) without uncertainties.

Lemma 2 [30, Theorem 1] Consider the nominal
NNCS (8) without uncertainties, i.e., Ad = Ad = Ad

and Bd = Bd = Bd. Let the equilibrium point x∗ = 0

and (x∗,u∗,v∗,w∗) satisfy (14). Let v1 ∈ Rn1 ,v1 ≜
2v1

∗−v1, and let αϕ,βϕ ∈ Rnϕ be given vectors such that
the combined nonlinearity ϕ is locally sector-bounded in
the sector [αϕ,βϕ] around the point (v∗,w∗). If there
exists P ∈ Sn≻0 and λ ∈ Rnϕ

≥0 such that

R⊤
V

[
A⊤

d PAd − P A⊤
d PBd

∗ B⊤
d PBd

]
RV +X(λ) ≺ 0, (15)

[ (
v1i − v1∗,i

)2
W 1

i

∗ P

]
⪰ 0, ∀i ∈ [[n1]], (16)

where W 1
i is the i-th row of W 1, v1∗,i is the i-th entry of

v1
∗, and

RV =

[
In 0n×nϕ

Nux Nuw

]
, Rϕ =

[
Nvx Nvw

0nϕ×n Inϕ

]
, (17)

X(λ) = R⊤
ϕΨ

⊤
ϕMϕ(λ)ΨϕRϕ, (18)

then, (i) the nominal NNCS is locally stable around x∗ =

0, and (ii) the set E (P,x∗) ≜ {x ∈ Rn|(x−x∗)
⊤P (x−

x∗) ≤ 1} is an inner-approximation of the ROA R, i.e.,

E (P,x∗) ⊆ R ≜ {x ∈ Rn| limt→∞ X (t,x, Ad, Bd) =
x∗, Ad = Ad = Ad, Bd = Bd = Bd}.

3 Stability of uncertain neural network control
systems

Although Lemma 2 provides a sufficient stability con-
dition for the NNCS (8) when the uncertainties are not
present, it cannot be directly extended to the case with
interval matrix uncertainties because of the quadratic
terms involving Ad and Bd in (15).

In this section, we first introduce an LMI condition in
Proposition 1 that linearly depends on the system ma-
trices Ad and Bd for the nominal NNCS. Then, in Theo-
rem 1, we extend this result to the uncertain NNCS (8)
by formulating a sufficient robust stability certification
using vertex LMI conditions. To enhance computational
efficiency, three relaxed LMI conditions are presented in
Section 4, which are shown to be sufficient robust sta-
bility certificates in Theorem 2 with the same level of
conservativeness as proved in Proposition 2.

Proposition 1 Let Ad, Bd be two given matrices with-
out uncertainties (i.e., Ad = Ad = Ad and Bd = Bd =
Bd), and let RV ,X(λ) be defined as in (17) and (18), re-
spectively. For any P ∈ Sn≻0 and λ ∈ Rnϕ

≥0, the following

LMI (19) is equivalent to (15):−R⊤
V

[
In

0m×n

]
P [In 0n×m]RV +X(λ) ∗

P [Ad Bd]RV −P

≺0. (19)

PROOF. The left-hand side of (15) can be writ-

ten equivalently as R⊤
V

[
A⊤

d PAd − P A⊤
d PBd

∗ B⊤
d PBd

]
RV +

X(λ) = R⊤
V

[
A⊤

d PAd A⊤
d PBd

∗ B⊤
d PBd

]
RV − R⊤

V

[
P 0

0 0

]
RV +

X(λ) = R⊤
V

[
A⊤

d

B⊤
d

]
P [Ad Bd]RV−R⊤

V

[
In

0

]
P [In 0]RV+

X(λ). Since −P ≺ 0, it is easy to check that LMI (19)
is equivalent to (15) by using the Schur complement of
the last equation above. 2

Since the LMI condition (19) in Proposition 1 is linear
in Ad and Bd, it can be extended to the uncertain NNCS
(8). Specifically, consider the uncertain NNCS (8) with
Ad, Bd satisfying the interval matrix uncertainty con-
straints (2) and let RV , X(λ) be defined as above. If
there exists a matrix P ∈ Sn≻0 and a vector λ ∈ Rnϕ

≥0

such that (19) holds for any Ad ∈ [Ad, Ad] and any Bd ∈
[Bd, Bd], then the uncertain NNCS (8) is locally stable
around x∗ = 0. This can be easily proven by showing
that the Lyapunov function V(x) ≜ (x−x∗)

⊤P (x−x∗)
satisfies V(x(t + 1)) < V(x(t)), for any x(t) ̸= x∗,
Ad ∈ [Ad, Ad], Bd ∈ [Bd, Bd], and t ≥ 0. However, veri-
fying uncertain LMIs (19) for any Ad ∈ [Ad, Ad] and any
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Bd ∈ [Bd, Bd] is known to be NP-hard [21].

The following theorem proposes a method for solving
the uncertain LMIs by replacing the interval matrix un-
certainties with the vertex matrices.

Theorem 1 Consider the uncertain NNCS (8) with
Ad, Bd satisfying the interval matrix uncertainty con-
straints (2). Let the equilibrium point x∗ = 0 and
(x∗,u∗,v∗,w∗) satisfy (14), and let v1 ∈ Rn1 . Let RV ,
X(λ) be defined as in (17) and (18), respectively. If there
exists a matrix P ∈ Sn≻0 and a vector λ ∈ Rnϕ

≥0, such that

(16) holds and (19) holds for any Ad ∈ vertex([Ad, Ad])
and Bd ∈ vertex([Bd, Bd]), then, (i) the uncertain
NNCS (8) is locally stable around x∗ = 0, and (ii) the

set E (P,x∗) ≜ {x ∈ Rn|(x − x∗)
⊤P (x − x∗) ≤ 1}

is an inner-approximation of the robust ROA R̃, i.e.,
E (P,x∗) ⊆ R̃ ≜ {x ∈ Rn| limt→∞ X (t,x, Ad, Bd) =
x∗,∀Ad ∈ [Ad, Ad],∀Bd ∈ [Bd, Bd]}.

PROOF. Denote vertex([Ad, Ad]) ≜ {A1, . . . , AnA
}

and vertex([Bd, Bd]) ≜ {B1, . . . , BnB
}. Since [Ad, Ad]

and [Bd, Bd] are convex sets, for arbitrary Ad ∈
[Ad, Ad] and Bd ∈ [Bd, Bd], there always exist non-
negative scalars α1, . . . , αnA

, β1, . . . , βnB
such that∑nA

i=1 αi = 1,
∑nB

j=1 βj = 1, Ad =
∑nA

i=1 αiAi

and Bd =
∑nB

j=1 βjBj . It is easy to check that

P [Ad Bd]RV = P [
∑nA

i=1 αiAi

∑nB

j=1 βjBj ]RV =∑nA

i=1

∑nB

j=1 αiβjP [Ai Bj ]RV . Since (19) holds for any

Ad ∈ {Ai}nA
i=1 and Bd ∈ {Bj}nB

j=1, it is easy to see that

the left-hand side of (19) is a summation of nA · nB

negative definite matrices, which implies that (19)
holds for any Ad ∈ [Ad, Ad] and any Bd ∈ [Bd, Bd].
Using Proposition 1, we know (15) also holds for any
Ad ∈ [Ad, Ad] and any Bd ∈ [Bd, Bd]. Then, following
the proof of [30, Theorem 1], we can show that the Lya-

punov function V(x) ≜ (x − x∗)
⊤P (x − x∗) satisfies

V(x(t+1)) < V(x(t)), for any x(t) ̸= x∗, Ad ∈ [Ad, Ad],
Bd ∈ [Bd, Bd], and t ≥ 0. This completes the proof. 2

In the following sections, we will denote the LMI con-
ditions established in Theorem 1 as (LMI-Vertex).
Theorem 1 provides a sufficient condition based on the
vertices of the interval uncertain matrices to certify
the robust stability of the uncertain NNCS (8). While
this vertex-based approach is manageable for uncertain
NNCSs with relatively low state and input dimensions,
in the worst-case scenario, it demands satisfaction of
2n(n+m) vertex constraints. Although techniques such as
vertex reduction methods presented in [1,3] can alleviate
the computational load, the number of LMI constraints
still exhibits exponential growth rates with respect to
the system dimension n and input dimension m.

4 Relaxed sufficient stability conditions

To avoid the vertex enumeration involved in Theorem
1, this section will introduce three relaxed sufficient
conditions for certifying the robust stability of the
uncertain NNCS (8). Since intervals are closed under
multiplication [13], we can compute the multiplication
[Bd, Bd]Nuw = [infBd∈[B

d
,Bd]

BdNuw, supBd∈[B
d
,Bd]

BdNuw] ≜ [BN , BN ]. Let

B̃0 =
1

2
(BN +BN ), and B̃r =

1

2
(BN −BN ). (20)

Note that B̃0, B̃r ∈ Rn×nϕ andBdNuw can be written as

BdNuw = B̃0 +
∑n

i=1

∑nϕ

j=1 e
n
i g̃ij(e

nϕ

j )
⊤
, where g̃ij ∈ R

and |g̃ij | ≤ B̃r(i, j).

The following result shows the feasibility equivalence of
two LMIs that will be used for the robust stability of
NNCS (8).

Proposition 2 Consider the uncertain NNCS (8) with
Ad, Bd satisfying the interval matrix uncertainty con-
straints (2). Let the equilibrium point x∗ = 0 and
(x∗,u∗,v∗,w∗) satisfy (14), and let v1 ∈ Rn1 . Let RV ,

X(λ), B̃0 and B̃r be defined as in (17), (18), and (20),

respectively. Define n̂ = 2n + nϕ, D =
[
Ar B̃r 0n×n

]⊤
and

Z(λ, P )=

−R⊤
V

[
In

0m×n

]
P
[
In 0n×m

]
RV +X(λ) ∗

P
[
A0 B̃0

]
−P

.
(21)

Then the following two statements are equivalent.

a) There exists a positive definite matrix P ∈ Sn≻0, a

vector λ ∈ Rnϕ

≥0, and positive scalars γij > 0 (i ∈ [[n̂]], j ∈
[[n]]) such that (LMI-I) shown below is feasible:

(LMI-I)Z(λ, P )+
n̂∑

i=1

n∑
j=1

γij(D(i, j))2eie
⊤
i U

∗ −V

≺0, (22)

and (16) holds

where

V = diag (γ11, . . . , γ1n, . . . , γn̂1, . . . , γn̂n) , (23a)

U =

[
0(n+nϕ)×n · · · 0(n+nϕ)×n

P · · · P

]
∈ Rn̂×n̂n. (23b)

b) There exists a positive definite matrix P ∈ Sn≻0, a

vector λ ∈ Rnϕ

≥0, and diagonal matrices T ∈ Rn̂×n̂, S ∈
Rn×n such that (LMI-II) shown below is feasible:
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(LMI-II) Z(λ, P ) + T
∗
∗

0n×(n+nϕ) P −S

 ≺ 0, (24a)

DSD⊤ ≺ T, (24b)

and (16) holds.

PROOF. (1) First, we prove b) ⇒ a). Since (16)
is included in (LMI-II), we only need to show that
given P ∈ Sn≻0, λ ∈ Rnϕ

≥0, and diagonal matrices

T = diag(t1, · · · , tn̂), S = diag(s1, · · · , sn) satisfy-
ing (24a)-(24b), there exist positive scalars γij > 0
(i ∈ [[n̂]], j ∈ [[n]]) such that P,λ, {γij} satisfy (22). This
part of the proof will consist of three steps: i) we show
that the diagonal elements of T and S are all positive; ii)
we construct the candidate positive scalars {γij} using
the diagonal matrices T and S; iii) we prove (22) holds
with these constructed scalars {γij} and the same P,λ.

i) By the property of Schur complement of (24a), we

have −S ≺ 0 and Z(λ, P ) + T +
[
0 P

]⊤
S−1

[
0 P

]
≺

0. Therefore, S is positive definite, which implies
that s1, · · · , sn > 0. From condition (24b), we get
T ≻ DSD⊤ ⪰ 0, which implies that T ≻ 0 and
t1, · · · , tn̂ > 0.

ii) Let ϵ′ > 0 be an arbitrary positive real number,

and denote matrix F ≜ −1n×n̂SD
⊤ − DS1⊤

n×n̂ −
ϵ′1n×n̂S1

⊤
n×n̂. Clearly, F is symmetric, which im-

plies all its eigenvalues are real. Since T ≻ DSD⊤,
λmin(T − DSD⊤) > 0. Thus, there exists a pos-
itive scalar ϵ satisfying 0 < ϵ < ϵ′, such that
λmin(T −DSD⊤)+ϵλmin(F ) > 0. By Weyl’s inequality
[10, Theorem 4.3.1], we have λmin(T −DSD⊤ + ϵF ) ≥
λmin(T − DSD⊤) + ϵλmin(F ) > 0. Therefore, the
matrix T − DSD⊤ + ϵF is positive definite since it is
symmetric and all of its eigenvalues are positive. Since
ϵF −DSD⊤ ≺ −(D + ϵ1n×n̂)S(D + ϵ1n×n̂)

⊤, we have
T −(D+ϵ1n×n̂)S(D+ϵ1n×n̂)

⊤ ≻ T −DSD⊤+ϵF ≻ 0.

Denote D̃ ≜ D + ϵ1n×n̂ and G ≜ T − D̃SD̃⊤.

Then, G ≻ 0 and D̃(i, j) > D(i, j) ≥ 0 for all
i ∈ [[n̂]], j ∈ [[n]]. By elementary matrix operations, we

can get G(p, p) = tp −
∑n

k=1 sk(D̃(p, k))2 for p ∈ [[n̂]],

and G(p, q) = −
∑n

k=1 skD̃(p, k)D̃(q, k) for p, q ∈ [[n̂]]
and p ̸= q. Define

γij =
sj

∑n̂
k=1 D̃(k, j)CG

k,1

D̃(i, j)CG
i,1

, i ∈ [[n̂]], j ∈ [[n]]. (25)

Obviously, γij > 0 since CG
i,1 > 0 from Lemma 3

and D̃(i, j) > 0, sj > 0, for i ∈ [[n̂]], j ∈ [[n]]. It

is easy to check that for any j ∈ [[n]],
∑n̂

i=1
1
γij

=∑n̂
i=1

D̃(i,j)CG
i,1

sj
∑n̂

k=1
D̃(k,j)CG

k,1

=

∑n̂

i=1
D̃(i,j)CG

i,1

sj
∑n̂

k=1
D̃(k,j)CG

k,1

= 1
sj
.

When i = 1, we have t1 −
∑n

j=1 γ1j(D̃(1, j))2 >

t1 −
∑n

j=1 γ1j(D̃(1, j))2 = (
∑n̂

j=1 G(j, 1)CG
j,1)/C

G
1,1

= |G|/CG
1,1 > 0. When i = 2, . . . , n̂, it holds that∑n

j=1 γij(D(i, j))2 <
∑n

j=1 γij(D̃(i, j))2 = (
∑n

j=1 sj

D̃(i, j)
∑n̂

k=1 D̃(k, j)CG
k,1)/C

G
i,1 = (

∑n
j=1 sjD̃(i, j)2CG

i,1)

/CG
i,1 + (

∑n̂
k=1,k ̸=i

∑n
j=1 sjD̃(i, j)D̃(k, j)CG

k,1)/C
G
i,1 =

((ti − G(i, i))CG
i,1 −

∑n̂
k=1,k ̸=i G(k, i)CG

k,1)/C
G
i,1 =

(tiC
G
i,1 −

∑n̂
k=1 G(k, i)CG

k,1)/C
G
i,1 = ti, where the last

equality is according to the Laplace expansion in
Lemma 5. Therefore, {γij} defined in (25) ensures that∑n

j=1 γij(D̃(i, j))2 ≤ ti and
∑n̂

i=1
1
γij

≤ 1
sj
, for i ∈

[[n̂]], j ∈ [[n]]. Thus,
∑n̂

i=1

∑n
j=1 γij(D(i, j))2eie

⊤
i ⪯ T

and diag(
∑n̂

i=1
1
γi1

, . . . ,
∑n̂

i=1
1

γin
) ⪯ S−1.

iii) Note that Z(λ, P )+
∑n̂

i=1

∑n
j=1 γij(D(i, j))2eie

⊤
i +

UV −1U⊤ = Z(λ, P ) +
∑n̂

i=1

∑n
j=1 γij(D(i, j))2eie

⊤
i +[

0 P
]⊤

diag(
∑n̂

i=1
1
γi1

, . . . ,
∑n̂

i=1
1

γin
)
[
0 P

]
⪯ Z(λ, P )

+ T +
[
0 P

]⊤
S−1

[
0 P

]
≺ 0. Using the Schur com-

plement of Z(λ, P ) +
∑n̂

i=1

∑n
j=1 γij(D(i, j))2eie

⊤
i +

UV −1U⊤, it is clear that (22) holds with such P,λ and
{γij} given in (25). This completes the first part of the
proof.

(2) Next, we prove a) ⇒ b). Similar to the first case, we
only need to show that given P ∈ Sn≻0, λ ∈ Rnϕ

≥0, and

γij > 0 (i ∈ [[n̂]], j ∈ [[n]]) satisfying (22), there exist
diagonal matrices T and S such that P,λ, T, S satisfy
(24a)-(24b). This part of the proof will consist of two
steps: i) we construct diagonal matrices T ∗ and S and
show that they satisfy a relaxed version of (24a)-(24b);
ii) we prove that the feasibility of the relaxed conditions
implies the feasibility of (24a)-(24b).

i) We first show that there exist diagonal matri-
ces T ∗, S satisfying (24a) and DSD⊤ ⪯ T ∗. Let
Vi = diag(γi1, γi2, . . . , γin) for i ∈ [[n̂]]. Then V =
diag(V1, V2, . . . , Vn̂). Denote Di as a matrix whose
entries are all zeros except that the i-th row of Di

is the same as the i-th row of D for i ∈ [[n̂]]. Obvi-

ously, D =
∑n̂

i=1 D
i. Define diagonal matrices T ∗ ≜

diag(t1, . . . , tn̂) =
∑n̂

i=1

∑n
j=1 γij(D(i, j))2eie

⊤
i and

S ≜ diag(s1, s2, . . . , sn) where sj = 1∑n̂

i=1

1
γij

, j ∈ [[n]].

It’s easy to check that T ∗ =
∑n̂

i=1 D
iVi(D

i)⊤ ⪰ 0 and

S = (
∑n̂

i=1 V
−1
i )−1 ≻ 0.

Using the Schur complement of (22), we get Z(λ, P ) +∑n̂
i=1

∑n
j=1 γij(D(i, j))2eie

⊤
i + UV −1U⊤ ≺ 0 ⇒

Z(λ, P ) + T ∗ + U diag(V −1
1 , . . . , V −1

n )U⊤ ≺ 0. Since

U diag(V −1
1 , . . . , V −1

n )U⊤ =
[
0 P

]⊤∑n
i=1 V

−1
i

[
0 P

]
=[

0 P
]⊤

S−1
[
0 P

]
,we haveZ(λ, P )+

[
0 P

]⊤
S−1

[
0 P

]
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+ T ∗ ≺ 0. Because −S ≺ 0, the Schur complement of
the aforementioned inequality implies that S and T ∗

satisfy (24a), i.e.,

Z(λ, P ) + T ∗ ∗
∗

0 P −S

 ≺ 0.

Next, we show S and T ∗ satisfy DSD⊤ ⪯ T ∗. Let Hi =[
DiVi(D

i)⊤ Di

∗ V −1
i

]
for i ∈ [[n̂]] and H =

[
T ∗ D

∗ S−1

]
.

Then, H =

[
T ∗ D

∗ S−1

]
=

[∑n̂
i=1 D

iVi(D
i)⊤

∑n̂
i=1 D

i

∗
∑n̂

i=1 V
−1
i

]

=
n̂∑

i=1

[
DiVi(D

i)⊤ Di

∗ V −1
i

]
=

n̂∑
i=1

Hi. For any Hi where

i ∈ [[n̂]], we have V −1
i ≻ 0 and the Schur complement of

Hi is D
iVi(D

i)⊤−Di(V −1
i )−1(Di)⊤ = 0, which implies

that Hi ⪰ 0. Thus, we get H =
∑n̂

i=1 Hi ⪰ 0. By us-
ing the property of the Schur complement of H, we get
T ∗ −DSD⊤ ⪰ 0.

ii) Now we show that there exists a diagonal matrix
T , together with S above, satisfying (24a)-(24b). Since

Z(λ, P ) + T ∗ +
[
0 P

]⊤
S−1

[
0 P

]
≺ 0, it’s easy to

check that there always exists ϵ > 0 such that Z(λ, P )+

T ∗ + ϵIn̂ +
[
0 P

]⊤
S−1

[
0 P

]
≺ 0. Let T = T ∗ + ϵIn̂.

Then, we have DSD⊤ ⪯ T ∗ ≺ T and Z(λ, P ) + T +[
0 P

]⊤
S−1

[
0 P

]
≺ 0. Using the Schur complement of

the aforementioned inequality, T and S satisfy (24a) and
(24b). This completes the proof. 2

The LMIs developed in [2, Proposition 3.3] can also be
extended to certify the robust stability of the uncertain
NNCS (8). Specifically, either statement in Proposition 2
holds if and only if there exists P ∈ Sn≻0, λ ∈ Rnϕ

≥0, γij >

0 (i ∈ [[n̂]], j ∈ [[n]]), and Y ∈ Sn̂ such that (LMI-III)
shown below is feasible:

(LMI-III)Y −
n̂∑

i=1

n∑
j=1

γij(D(i, j))2eie
⊤
i U

∗ V

 ≻ 0, (26a)

Y ≺ −Z(λ, P ), (26b)

and (16) holds,

where Z(λ, P ) is defined in (21) and U, V are defined in
(23). In fact, it’s straightforward to verify the equiva-
lence between (LMI-I) and (LMI-III) as (22) is equiva-
lent to (26) from Schur complement, by substituting Y
with −Z(λ, P ) in (26a).

Therefore, the three LMIs proposed above, (LMI-I),

Fig. 2. (LMI-I), (LMI-II), and (LMI-III) all serve as certifi-
cates for the robust stability of the NNCS in (8) with in-
terval uncertainties in both the state and input matrices.
These LMIs extend the corresponding robust stability re-
sults for linear systems with interval state matrix uncertain-
ties in [1,2,18]. The feasibility equivalence of the three pro-
posed LMIs also implies the previously unestablished feasi-
bility equivalence of the corresponding LMIs in [1,2,18].

(LMI-II) and (LMI-III), are equivalent. Furthermore,
these three LMIs extend existing robust stability results
for linear systems with state matrix uncertainties to
NNCS with both state matrix and input matrix uncer-
tainties: (22) in (LMI-I) corresponds to the LMI in [18,
Theorem 1], (24) in (LMI-II) corresponds to the LMI
in [1, Theorem 4], and (26) in (LMI-III) corresponds to
the LMI in [2, Proposition 3.3]. Additionally, the proof
of feasibility equivalence shown above can be directly
used to prove the feasibility equivalence of the three
corresponding LMIs in [1,2,18]. The relationship among
these LMIs is summarized in Fig. 2.

The following result shows that (LMI-I), (LMI-II) and
(LMI-III) can be used to certify the robust stability of
the uncertain NNCS (8).

Theorem 2 Consider the uncertain NNCS (8) with
Ad, Bd satisfying the interval matrix uncertainty con-
straints (2). If either of the three LMIs - (LMI-I),
(LMI-II) and (LMI-III) - is feasible, then the conclusion
of Theorem 1 holds.

PROOF. Since the feasibilities of the three LMIs
are equivalent, we only need to show that one of
the three conditions will lead to the robust stabil-
ity of the uncertain system. For ease of readability,
we choose (LMI-I). Suppose there exists a matrix
P ∈ Sn≻0, a vector λ ∈ Rnϕ

≥0, and positive scalars γij > 0

(i ∈ [[n̂]], j ∈ [[n]]) such that (22) and (16) of (LMI-I)
hold. We will show that P and λ also satisfy (19) for any
Ad ∈ vertex([Ad, Ad]) and Bd ∈ vertex([Bd, Bd]). Let

Ξ =
[∑n

i,j=1 e
n
i fij(e

n
j )

⊤ ∑n
i=1

∑nϕ

j=1 e
n
i g̃ij(e

nϕ

j )
⊤
]
.

By Lemma 4 in Appendix, ∀γij > 0(i ∈ [[n̂]], j ∈ [[n]]),−R⊤
V

[
In 0

]⊤
P
[
In 0

]
RV +X(λ) ∗

P
[
Ad Bd

]
RV −P

 = Z(λ, P )+

[
0 P

]⊤ [
Ξ 0

]
+
[
Ξ 0

]⊤ [
0 P

]
⪯ Z(λ, P )+

∑n̂
i=1

∑n
j=1

(γij(D(i, j))2eie
⊤
i + 1

γij

[
0 P

]⊤
eje

⊤
j

[
0 P

]
) ≺ 0. The

last inequality is derived from the Schur complement of
(22). So P and λ satisfy (19), and thus (15) by Proposi-
tion 1. Then the conclusion follows by Theorem 1. 2
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Theorem 2 indicates that the three LMIs - (LMI-I),
(LMI-II) and (LMI-III) - are relaxations of (LMI-Vertex)
with the same level of conservativeness.

Remark 1 A brief comparison between [1, Theorem 4]
and [2, Proposition 3.3] was provided in [1], which stated
that [1, Theorem 4] had the advantage of requiring less
number of additional auxiliary decision variables. In this
paper, we show that these two LMIs are actually equiv-
alent in terms of feasibility. This equivalence indicates
that [1, Theorem 4] is more efficient than [2, Proposition
3.3] without sacrificing the feasibility.

Remark 2 The number of decision variables and the
size of the matrices involved in solving the three LMI con-
ditions are summarized in Table 1. It can be observed that
(LMI-II) has the least computation complexity in terms of
the number of decision variables and the size of the LMIs
when n > 1. The computational complexity of (LMI-III)
tends to be the largest, due to the extra decision variable
Y . Despite the increased computational complexity, in-
cluding additional decision variables, as in (LMI-I) and
(LMI-III), can offer certain benefits depending on the
application, such as improving the interpretability of in-
termediate variables and providing greater flexibility for
further modification of the optimization problem. For in-
stance, the additional variable Y in (LMI-III) separates
the constraints on the nominal system and the uncer-
tainty bounds into two LMIs; by imposing additional con-
straints on Y , one can enforce desired properties either
on the nominal system or the uncertainties. The practi-
cal efficiency of the proposed LMI conditions is demon-
strated through two numerical examples in Section 5.

Table 1
Comparison of (LMI-I), (LMI-II) and (LMI-III). The system
state dimension is n, the number of neurons in the first layer
is n1, the total number of neurons is nϕ (i.e., nϕ =

∑ℓ
i=1 ni),

and n̂ = 2n+ nϕ.

# Decision Variables Size of LMIs

(LMI-I) n(n+2n̂+1)/2+nϕ (n̂+n1)(n+1)

(LMI-II) n(n+3)/2+n̂+nϕ n+2n̂+n1(n+1)

(LMI-III) (n+n̂)(n+n̂+1)/2+nϕ (n̂+n1)(n+1)+n̂

Remark 3 The problem of verifying the robust stability
of uncertain NNCSs with an uncertain plant and an NN
controller was also explored in [30]. However, the uncer-
tainties discussed therein are categorized as structured
uncertainties according to [27], characterized by IQCs,
and the approach given in [30] is not directly applicable to
the robust stability problem considered in this work. The
uncertainties related to interval matrices in this work are
less structured, only necessitating knowledge of their up-
per and lower bounds.

On the other hand, in order to find the largest robust ROA
inner-approximations, we can follow the same procedure
as in [30] by adding trace(P ) as the cost function of the
LMIs developed before. For example, the optimization

problem for (LMI-I) is formulated as follows:

min
P,λ,{γij}

trace(P ) s.t. (LMI-I) holds. (27)

The optimization problem for other LMIs are formulated
similarly. Based on Theorem 2 and the equivalence in fea-
sibility of the three relaxed LMIs, the sizes of the robust
ROA approximations are the same for (LMI-I), (LMI-II),
and (LMI-III), which are smaller than the ROA approx-
imation of (LMI-Vertex). However, the induced conser-
vativeness of the relaxed LMIs is minimal compared to
(LMI-Vertex), as demonstrated in the simulation exam-
ples.

Remark 4 Although this work focuses on the robust sta-
bility analysis of uncertain NNCSs (8) with linear dy-
namics and FNN controllers, the proposed method can
also be extended to more general uncertain systems with
nonlinear dynamics and other NN architectures (e.g.,
convolutional and recurrent neural networks), as QCs
can describe a wide range of nonconvex and nonlinear
functions used in general NNCSs [19,29].

5 Simulation results

We use two simulation examples to illustrate the results
of the preceding sections. In the following examples, the
proposed LMIs are solved using MOSEK in MATLAB
R2022b on a desktop with an Intel I7-8700K CPU and
32 GB memory.

5.1 Inverted pendulum with uncertain length

Consider the linearized inverted pendulum model:

ẋ =

[
0 1
g
ℓ − µ

mℓ2

]
x+

[
0

1
mℓ2

]
u

where the state x = [θ θ̇]⊤ ∈ X ⊂ R2 represents the

angular position θ and velocity θ̇, and u ∈ R is the
control input. The state constraint set is given by X =
[−2.5, 2.5] × [−6, 6]. The continuous-time dynamics is
discretized with the sampling time ∆t = 0.02 seconds.
The inverted pendulum has the mass m = 0.15 kg and
the friction coefficient µ = 0.05 N·m·s/rad. We assume
that there exists measurement uncertainty in the length
of the pendulum such that ℓ ∈ [0.5 − δ, 0.5 + δ], where
δ is the level of uncertainty. The system thus contains
interval matrix uncertainties that are in the form of (2).
We use the same NN controller as in [30] which was
obtained through a reinforcement learning process using
policy gradient. The NN controller is parameterized by
a 2-layer FNN with 32 neurons per layer and tanh as
the activation function. The control input is saturated
by u = satūuπ(x) with ū = −u = 0.7 N·m. We also

assume that v1 ≜ W 1x+b1 ∈ [v1,v1] with v1 = −v1 =
0.1× 132×1.

Fig. 3 shows inner-approximations of the robust ROA
obtained by solving optimization problems (27) using
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the LMIs from Theorem 1 and Theorem 2. The relaxed
LMIs yield ellipsoid inner-approximations of equal size,
within the set {x : v1 ≤ v1 ≤ v1} as enforced by (16),
consistent with the LMI equivalence established in Sec-
tion 4. The ROA approximations computed based on
relaxed LMIs have a similar size to the one based on
(LMI-Vertex) in Theorem 1. Trajectories from randomly
generated initial values on the inner-approximation
boundary are plotted in green and all converge to the
origin, consistent with Theorem 2. The computation
times for solving (LMI-I), (LMI-II), (LMI-III), and
(LMI-Vertex) are 1.886, 0.537, 4.301, and 2.991 seconds,
respectively. The volumes of the ROA approximations
are 1.560, 1.560, 1.560, and 1.561, respectively. Fig.
4 illustrates robust ROA inner-approximations under
varying levels of uncertainty, revealing that the approxi-
mated ROAs shrink as the level of uncertainty increases.

Fig. 3. Inner-approximations of the robust ROA for the in-
verted pendulum model with uncertainty level δ = 0.01. The
three inner-approximations corresponding to the three LMIs
are congruent. Trajectories with randomly selected initial
states on the boundary are plotted in green.

Fig. 4. Inner-approximations of the robust ROA for the in-
verted pendulum model with varying uncertainty levels.

Fig. 5. Mass-spring-damper system with nc carts.

5.2 Mass-spring-damper with uncertain coefficients

Consider the mass-spring-damper system consisting of
nc carts as shown in Fig. 5 [15]. Its state-space represen-
tation is

ẋ =

[
0nc×nc

Inc

−M−1K −M−1C

]
x+

[
0nc×nc

M−1

]
u

where the state x = [z1 · · · znc
ż1 · · · żnc

]⊤ ∈ R2nc

contains the position and velocity of the carts, the con-
trol input u = [f1 · · · fnc

]⊤ ∈ Rnc combines the ex-
ternal forces applied on each cart, and K,M,C are the
same as those given in [15]. The continuous-time dynam-
ics is discretized with the sampling time ∆t = 0.1 sec-
onds. We assume that each cart has a mass of 1 kg, and
the spring stiffness constants and damping coefficients
are unknown and given in intervals: ki ∈ [1− δk, 1 + δk]
and ci ∈ [0.1 − δc, 0.1 + δc], ∀i ∈ [[nc]] where δk = 0.05
and δc = 0.005 reflect the level of model uncertainties.

The FNN controller π(x) is trained using stochastic gra-
dient descent to approximate an MPC controller that
stabilizes the carts around the equilibrium point. It is
parameterized by a 2-layer tanh-activated FNN, with 8
neurons in each layer when nc = 1 or 2 and 16 neurons
when nc = 3 or 4. It is assumed that v1 ≜ W 1x+ b1 ∈
[v1,v1] with v1 = −v1 = 0.2× 1n1×1. Fig. 6 shows the
robust ROA inner-approximations on the z1 − ż1 plane
and the phase portrait of the closed-loop system in green,
with nc = 1. The results are consistent with the analysis

Fig. 6. Inner-approximations of the robust ROA for the
mass-spring-damper model with nc = 1. The three inner-ap-
proximations corresponding to the three LMIs coincide with
each other. Trajectories with randomly selected initial states
on the boundary are plotted in green.
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Table 2
Comparison of runtime for solving the proposed LMI condi-
tions for the mass-spring-damper example. The symbol “-”
indicates that the computation did not finish within 3 hours.

Time (s)

nc = 1 nc = 2 nc = 3 nc = 4

(LMI-I) 0.125 0.369 2.692 6.332

(LMI-II) 0.098 0.142 0.169 0.320

(LMI-III) 0.152 0.409 3.523 7.005

(LMI-Vertex) 0.103 2.153 673.4 -

Table 3
Comparison of the sizes of the ROA approximations for the
mass-spring-damper example.

Volume of ROA approximation

nc = 1 nc = 2 nc = 3 nc = 4

(LMI-I) 0.531 288.2 2036 22473

(LMI-II) 0.531 288.2 2036 22473

(LMI-III) 0.531 288.2 2036 22473

(LMI-Vertex) 0.531 288.9 2051 -

in Section 4, as the three relaxed LMIs yield robust ROA
inner-approximations with the same size, and all trajec-
tories starting inside the robust ROA are driven to the
origin despite the uncertainties. The comparison on run-
times and ROA approximation volumes for solving the
three relaxed LMIs and the vertex-based LMI with vary-
ing system dimensions are summarized in Table 2 and 3.
One can observe that the relaxed LMIs achieve signifi-
cant improvement in computational efficiency for high-
dimensional systems with minimal conservativeness in
ROA approximations compared to (LMI-Vertex), which
aligns with the results in Table 1.

6 Conclusion

In this paper, we investigated the robust stability prob-
lem for NNCSs with interval matrix uncertainties. Based
on classic robust stability techniques and the QC-based
descriptions of NNs, a novel LMI condition was pro-
posed to certify the robust stability of uncertain NNCSs.
Relaxed sufficient conditions based on LMIs were also
presented which can reduce the computation burden in-
volved in solving the LMIs. Feasibility of the three re-
laxed conditions was proved to be equivalent and their
connections with existing robust stability results were
also established.

Appendix

Lemma 3 GivenA ∈ Rn×n as a positive definite matrix
with strictly positive diagonal entries and strictly negative
off-diagonal entries, then the cofactors of A are strictly
positive.

PROOF. Since A is positive definite, it is non-singular
and its eigenvalues are positive. Thus,A is a non-singular

M-matrix [20, Definition 1]. Obviously, A is irreducible
since all entries of A are non-zero and permutation
does not introduce any zero entries. Since an irreducible
non-singular M-matrix is strictly inverse-positive [20,
Theorem A.(ii)], A−1 is entry-wise positive. Recall that

A−1 = adj(A)
|A| , and the adjugate matrix of A is the trans-

pose of its cofactor matrix C (i.e., the (i, j)-th entry
of adj(A) is CA

i,j). Since A is positive definite, |A| > 0.

Thus, adj(A) = |A| · A−1 is entry-wise positive which
indicates that all the cofactors are strictly positive. 2

Lemma 4 [25] Let A, B, F be real matrices of suitable
dimensions with F⊤F ≤ I. Then, for any scalar γ > 0,
AFB +B⊤F⊤A⊤ ⪯ γAA⊤ + 1

γB
⊤B.

Lemma 5 (Laplace Expansion) [10] Given a matrix
A ∈ Rn×n, |A| =

∑n
j=1 A(i, j)CA

i,j =
∑n

j=1 A(j, i)CA
j,i

with i ∈ [[n]], and
∑n

j=1 A(k, j)CA
i,j =

∑n
j=1 A(j, k)CA

j,i

= 0 with i, k ∈ [[n]], i ̸= k.
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