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Abstract

A small-gain theorem in the formulation of barrier function is developed in this work for safety verification of interconnected
systems. This result is helpful to verify input-to-state safety (ISSf) for interconnected systems from the safety information
encoded in the individual ISSf-barrier functions. Also, it can be used to obtain a safety set in a higher dimensional space from
the safety sets in two lower dimensional spaces.
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1 Introduction

Safety is crucial in practical control design, which re-
quires any trajectories of a control system initialized in
a prescribed safety set to be kept out of unsafe sets. Ap-
plications concerned with safety are ubiquitous in our
daily life, ranging from cars in the street to aeroplanes in
the air. For example, autonomous vehicles are equipped
with lane-keeping modules [23]; a robot team is designed
to avoid collision between robots [20]; and aircrafts must
satisfy the safety requirement during takeoff and land-
ing [3].

For safety-critical systems, rigorous verification of safe-
ty is the first step towards other control tasks (e.g., sta-
bilization and regulation). In general, the techniques for
safety verification can be classified into two sorts: model
checking [5] and deductive verification [11]. Compared
with the former one, deductive verification provides a
safety certificate by mathematical inferences rather than
exhaustively checking all of the possible system behav-
iors. The barrier function gives a promising deductive
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approach for safety verification, analogous to Lyapunov
functions for stability; e.g., see [1,2,6,9,15,16,19,21,24]
for more details. In [15], barrier functions were used to
formulate the verification tasks as convex programming
problems. A quadratic program framework was proposed
in [1] to balance the conflict between control tasks and
safety requirements. In [24], a novel barrier function,
called the zeroing barrier function, was proposed for es-
tablishing safety and analyzing the robustness of safe-
ty sets. Later, [9] redefined the notion of input-to-state
safety (ISSf) and provided a sufficient condition in the
sense of barrier function to check ISSf, which could be
regarded as the counterpart of Sontag’s input-to-state
stability (ISS) [18] for safety verification.

On the other hand, safety verification for high-
dimensional systems is difficult. For example, in [12],
safety was verified by the computation of the backward
reachable set, which requires solving a Hamilton-Jacobi-
Isaacs partial differential equation, whose computa-
tional burden increases exponentially as the system
dimension grows; in [23], safety was ensured by control
barrier functions constructed by the sum-of-squares op-
timization, which is computationally demanding and
only applicable for low-dimensional systems in general.
To handle this issue, a promising approach is to treat
a high-dimensional system as an interconnected system
consisting of lower-dimensional subsystems. The small-
gain technique is effective for verifying the stability of an
interconnected system by analyzing its less complicated
subsystems. In the stability analysis, this technique has
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been investigated extensively [7,8,10,13,25]. For exam-
ple, the Lyapunov-based small-gain theorem developed
in [8] has been found useful to establish ISS for inter-
connected systems, which has also been extended to
switched systems [25] and hybrid systems [13] in recent
years.

Considering that the barrier function provides a
Lyapunov-like verification approach, it is natural to ask
a question: does there exist a small-gain condition such
that one can establish safety for the interconnected
system based on the individual ISSf-barrier functions
of its subsystems? This question is not trivial. First,
there is no result about the small-gain theorem in the
ISSf setting, even though such an approach has been
widely used in checking stability or robustness of inter-
connected systems. Second, the tools of the traditional
small-gain theorems for stability analysis [7,8,10,13,25]
cannot be used to verify safety for interconnected sys-
tems, because barrier functions do not have the positive
definite property enjoyed by Lyapunov functions.

The objective of this paper is to develop a small-gain
theorem based on barrier functions for the safety ver-
ification of interconnected systems, in order to estab-
lish a higher-dimensional safety set from two lower-
dimensional safety sets. The main contributions are
summarized as follows. First, in order to handle the
interconnections, a set of tools are extended from the
traditional small-gain theorem for stability by remov-
ing the positive definiteness assumption. Then, based
on the ISSf-barrier function, a small-gain theorem for
safety verification is established. Such a tool enables us
to verify safety in a compositional way.

Notations and Terminologies. Throughout this pa-
per, ‘◦’ denotes the composition operator, i.e., f ◦g(s) =
f(g(s)); ‘T’ denotes the transpose operator; Id denotes
the identity function; | · | denotes the Euclidean norm;
|x|S = infs∈S |x − s| denotes the point-to-set distance
from a point x to a set S; φ′(r) denotes the derivative
of the continuously differentiable function φ at r; R and
R≥0 denote the set of real numbers and nonnegative re-
al numbers, respectively. For any measurable function
u : R≥0 → Rm, ‖u‖ = sup{|u(t)|, t ≥ 0} denotes the Lm∞
norm of u. A continuous function γ: R≥0 → R≥0 with
γ(0) = 0 is of class K, if it is strictly increasing. More-
over, a class K function γ is of class K∞ if it is unbound-
ed. A continuous function γ : R→ R with γ(0) = 0 is of
extended class K if it is strictly increasing. In particular,
an extended class K function γ is of extended class K∞
if it is unbounded. A function β : R≥0 × R≥0 → R≥0 is
of class KL if it is of class K on the first argument and
decreases to zero on the second argument.

2 Preliminaries

Consider the system

ẋ = f(x, u), x(t0) = x0 (1)

where x ∈ Rn is the state, u : R≥0 → Rm is the locally
essentially bounded input that accounts for uncertainty
entering the system, and the vector field f : Rn×Rm →
Rn is locally Lipschitz continuous.

We first review some definitions related to safety.

Definition 1 (Robust Forward Invariance [4, pp. 123])
A set S ⊆ Rn is robustly forward invariant, if for all
x0 ∈ S and any locally essentially bounded input u, the
solution x(t) of system (1) satisfies x(t) ∈ S for all
t ≥ t0.

Definition 2 (Input-to-State Safety) The system
(1) is input-to-state safe (ISSf) on the set

S = {x ∈ Rn : h(x) ≥ 0} (2)

with respect to the external input u, if the set

Sγ(‖u‖) = {x ∈ Rn : h(x) + γ(‖u‖) ≥ 0} (3)

is robustly forward invariant. Herein, h : Rn → R is a
continuous function, and γ is a class K∞ function. In
particular, we say that system (1) is safe on the set S
if there is no external input (i.e., u ≡ 0), in which case
Sγ(‖u‖) = S.

Definition 2 is different from [9, Def. 3] in that h is only
required to be continuous, which enables us to handle
the nonsmoothness resulting from the composition of
individual barrier functions.

Definition 3 (ISSf-Barrier Function) A continu-
ously differentiable function h : Rn → R is said to be
an ISSf-barrier function for system (1) if for all x ∈ Rn
and all u ∈ Rm,

∇h(x)f(x, u) ≥ −α(h(x))− η(|u|) (4)

where α and η are of extended class K∞ and of class K∞,
respectively.

Remark 1 The ISSf-barrier function (4) is a global ver-
sion of [9, Def. 4]. A continuously differentiable function
h : Rn → R is an ISSf-barrier function for system (1)
if and only if there exist functions σ and φ of class K∞
such that |h(x)| ≥ σ(|x|) and

|h(x)| ≥ φ(|u|)⇒ ∇h(x)f(x, u) ≥ −α(h(x)).
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The sufficiency part follows by considering the two cases
|α(h(x))| ≥ η(|u|)/c and |α(h(x))| < η(|u|)/c for any
constant c ∈ (−1, 1). For necessity, we can take

η(r) = −α(−φ(r))−min{0, inf
|h(x)|≤φ(r)

∇h(x)f(x, r)},

where −α(−φ(r)) is clearly of class K∞. Since φ is of ex-
tended class K∞, the set {x : |h(x)| ≤ φ(r)} is compact
for fixed r ≥ 0. By combining this with the local Lipschitz-
ness of h and f , −min{0, inf |h(x)|≤φ(r)∇h(x)f(x, r)} is
well-defined and non-decreasing on R≥0. Thus, η is a
class K∞ function.

The following lemma provides a sufficient condition for
establishing ISSf.

Lemma 1 Suppose that h is an ISSf-barrier function
satisfying (4). Then system (1) is ISSf, namely, the set
Sγ(‖u‖) defined in (3) is robustly forward invariant with

γ(r) := −α−1(−η(r)).

This lemma can be verified by the arguments used in the
proof of [9, Thm. 3].

Remark 2 Note that the set S defined in (2) is ISS 1 if
h is an ISSf-barrier function. To see this, we consider a
Lyapunov-like function as in [24]:

V (x) =

{
0, if x ∈ S;

−h(x), if x ∈ Rn \ S.

Then it follows from (4) that, for all x ∈ Rn \ S,

∇V (x)f(x, u) ≤ −α̂(V (x)) + η(|u|) (5)

where α̂(r) = −α(−r) is of class K∞ on R≥0. With [17,
Thm. 1], the conclusion follows. 2

3 Small-Gain Theorem for Safety Verification

Consider the interconnected system

ẋ1 = f1(x1, x2, u1) (6a)

ẋ2 = f2(x1, x2, u2) (6b)

where, for i = 1, 2, xi takes values in the Euclidean space
Rni , ui : R≥0 → Rmi is locally essentially bounded, and
fi : Rn1 × Rn2 × Rmi → Rni is locally Lipschitz. Let
x = (xT1 , x

T
2 )T and u = (uT1 , u

T
2 )T.

The small-gain theorem for safety verification of the in-
terconnected system (6) is given as follows.

1 As introduced in [17], a compact set S is ISS if there
exist functions β of class KL and γ of class K such that
|x(t)|S ≤ β(|x0|S , t − t0) + γ(‖u‖) holds for all t ≥ t0 and
x ∈ Rn.

Theorem 1 Consider the interconnected system (6).
For i = 1, 2, suppose that there exist continuously dif-
ferentiable function hi : Rni → R, extended class K∞
functions αi and ψi, and class K∞ function γi such that

∇h1(x1)f1(x1, x2, u1)

≥ −α1(h1(x1)) + ψ1(h2(x2))− γ1(|u1|), (7)

∇h2(x2)f2(x1, x2, u2)

≥ −α2(h2(x2)) + ψ2(h1(x1))− γ2(|u2|). (8)

If the small-gain condition

|φ1 ◦ φ2(r)| < |r|, ∀r ∈ R, (9)

with

φi(r) = α−1i ◦ (Id + ε) ◦ ψi(r),

holds for a suitable ε > 0, then there exists a continuous
function

h(x) = min{φ(h1(x1)), h2(x2)}, (10)

where φ is an extended class K∞ function related to φ1
and φ2, such that the interconnected system (6) is ISSf
on the set S = {x ∈ Rn1+n2 : h(x) ≥ 0}, namely, the set

Sγ(‖u‖) = {x ∈ Rn1+n2 : h(x) + γ(‖u‖) ≥ 0} (11)

is robustly forward invariant with 2

γ(r) = −φ ◦ α−11 (−(1 + 1/ε)γ1(r))

− α−12 (−(1 + 1/ε)γ2(r)). (12)

Remark 3 The function φi serves as the “ISSf gain” of
the xi-subsystem. The small-gain condition (9) is an ex-
tension of [7, Cond. (17)] by removing the positive defi-
niteness assumption. Note that ε is used to handle the ex-
ternal input u. If there is no external input (i.e., u ≡ 0),
φi can be chosen as φi(r) = α−1i ◦ ψi(r).

Remark 4 For the case u ≡ 0, with (7) and (8),

ḣi ≥ −αi(hi) + ψi(h3−i)

≥ −αi(hi) + min{0, inf
t≥t0

ψi(h3−i(s))}, i = 1, 2.

Then, according to Lemma 1, the set Ŝi = {xi :
hi(xi) + di ≥ 0} is robustly forward invariant, where

di = −min{0, inft≥t0 α
−1
i ◦ ψi(h3−i(s))}. Note that Ŝi

may be larger than the set Si =
{
xi : hi(xi) ≥ 0

}
,

which is used to encode the hard safety constraints that

2 Note that γ is of class K∞ since α̂1(r) = −φ ◦ α−1
1 (−(1 +

1/ε)r) and α̂2(r) = −α−1
2 (−(1 + 1/ε)r) are non-negative,

continuous, strictly increasing and unbounded on R≥0.
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should be met. To handle this issue, it needs to impose
the small-gain condition (9) on the ISSf gains φ1 and
φ2. Then, according to Theorem 1, xi(t) cannot leave Si
for all t ≥ t0, if x1(t0) ∈ S1 and x2(t0) ∈ S2.

Remark 5 Note that (7) and (8) are different from (4)
in that ψi is of extended class K∞. This modification is
necessary, because the interconnection ψi(h3−i) is helpful
to keep safety for the xi-system if h3−i(x3−i(t)) > 0 for
all t ≥ t0. Such a feature will be used to establish some
useful conclusions in the proof of Theorem 1, as detailed
in (16) and (22).

As indicated in (7) and (8), both individual ISSf-barrier
functions are coupled with interconnections. It is worth
noting that the function φ in (10) is helpful to handle
these interconnections. However, such a function cannot
be constructed by the tools of the traditional small-gain
theorems for stability analysis [7,13,25], because barrier
functions are not of the positive definiteness enjoyed by
Lyapunov functions. To handle this issue, an approach
to the construction of φ is given below, by extending the
tool for ISS on the positive domain in [7, Appendix] to
the whole domain.

Lemma 2 Let ρ0 : R→ R be a continuous function with
ρ0(0) = 0, ρ0(r) < 0 for all r < 0, and ρ0(r) > 0 for all
r > 0. Then there exists a continuous function ρ : R→ R
such that

• ρ0(r) < ρ(r) < 0 for all r < 0, and 0 < ρ(r) < ρ0(r)
for all r > 0;

• ρ is continuously differentiable on R, and ρ′(r) < 1
2

for all r ∈ R.

Proof. See Appendix A. 2

Lemma 3 Let φi be of extended class K∞ and satisfy
(9). Then there exists an extended class K∞ function φ
such that

• φ−11 (r) < φ(r) < φ2(r) for all r < 0, and φ2(r) <
φ(r) < φ−11 (r) for all r > 0;

• φ(r) is continuously differentiable on R\{0}, and
φ′(r) > 0 for all r ∈ R\{0}.

Proof. See Appendix B. 2

Then it is time to prove Theorem 1.

Proof of Theorem 1. By applying Lemma 3 to the
small-gain condition (9), the function φ in (10) can be
selected as follows

φ−11 (r) < φ(r) < φ2(r), ∀r < 0; (13a)

φ2(r) < φ(r) < φ−11 (r), ∀r > 0. (13b)

According to (10), the proof is equivalent to verifying
that both of the sets

C1 = {x1 ∈ Rn1 : φ(h1(x1)) + γ(‖u‖) ≥ 0},
C2 = {x2 ∈ Rn2 : h2(x2) + γ(‖u‖) ≥ 0}

are robustly forward invariant. In the following, we show
this by contradiction.

Suppose that at least one of the sets C1 and C2 is not
robustly forward invariant. Denote the first time instant
when xi(t) leaves the set Ci by τi, namely, for any real
number δ > 0,

τ1 := inf{t ≥ t0 : φ(h1(x1(t))) ≤ −γ(‖u‖)− δ}, (14a)

τ2 := inf{t ≥ t0 : h2(x2(t)) ≤ −γ(‖u‖)− δ}. (14b)

Note that τi will be infinite if Ci is forward invariant.
Without loss of generality, we assume that τi is finite.
Then we have the following three cases.

Case 1: τ1 < τ2. In this case, we have

φ(h1(x1(τ1))) = −γ(‖u‖)− δ < h2(x2(τ1)). (15)

As φ is continuous but not necessarily differentiable at
zero, we first consider the situation when ‖u‖ = 0. Ac-
cording to (15), h1(x1(τ1)) = φ−1(−δ) < 0. Besides, as
δ is an arbitrary real number larger than zero, we have
h2(x2(τ1)) ≥ 0. Thus, according to (7),

∇h1(x1(τ1))f1(x1(τ1), x2(τ1), u1(τ1))

≥ −α1(h1(x1(τ1))) + ψ1(h2(x2(τ1))) > 0 (16)

which implies that there exists a t in (t0, τ1) such
that h1(x1(t)) ≤ h1(x1(τ1)), and thus, φ(h1(x1(t))) ≤
φ(h1(x1(τ1))) since φ is of extended class K∞. This
contradicts the minimality of τ1.

Next, we consider the situation when ‖u‖ 6= 0. By com-
bining (12) and (15), we have

φ(h1(x1(τ1))) < −γ(‖u‖) ≤ φ ◦ α−11 (−(1 + 1/ε)γ1(|u1(τ1)|)),

and thus,

ε

1 + ε
α1(h1(x1(τ1))) < −γ1(|u1(τ1)|). (17)

Besides, as h1(x1(τ1)) < 0, it follows from (13a) and (15)
that

φ−11 (h1(x1(τ1))) < φ(h1(x1(τ1))) < h2(x2(τ1)),

which implies

1

1 + ε
α1(h1(x1(τ1))) < ψ1(h2(x2(τ1))). (18)
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By combining (7), (17), (18) and the fact that
φ′(h1(x1(τ1))) > 0, we have

φ′(h1(x1(τ1)))∇h1(x1(τ1))f1(x1(τ1), x2(τ1), u1(τ1)) > 0.

Thus, there exists some t in (t0, τ1) such that φ(h1(x1(t))) ≤
φ(h1(x1(τ1))), contradicting the minimality of τ1.

Case 2: τ1 > τ2. In this case,

h2(x2(τ2)) = −γ(‖u‖)− δ < φ(h1(x1(τ2))), (19)

and thus, similar to the derivation of (17), we have

ε

1 + ε
α2(h2(x2(τ2))) < −γ2(|u2(τ2)|). (20)

Thus, by applying (20) to (8),

∇h2(x2(τ2))f2(x2(τ2), x2(τ2), u1(τ2))

> − 1

1 + ε
α2(h2(x2(τ2))) + ψ2(h1(x1(τ2))).

(21)

If h1(x1(τ2)) ≥ 0, then

∇h2(x2(τ2))f2(x2(τ2), x2(τ2), u1(τ2)) > 0, (22)

which implies that there is a t in (t0, τ2) such that
h2(x2(t)) ≤ h2(x2(τ2)), contradicting the minimality of
τ2. We then consider h1(x1(τ2)) < 0. According to (13a),

h2(x2(τ2)) < φ(h1(x1(τ2))) < φ2(h1(x1(τ2))),

and thus,

1

1 + ε
α2(h2(x2(τ2))) < ψ2(h1(x1(τ2))). (23)

By substituting this into (21), it can be verified that the
minimality of τ2 is also violated.

Case 3: τ1 = τ2. For notational convenience, we take
τ = τ1 = τ2. Similar to the derivation of (17), we have

ε

1 + ε
αi(hi(xi(τ)) < −γi(|ui(τ)|), i = 1, 2. (24)

Then, according to (13a) and φ(h1(x1(τ))) = h2(x2(τ)),
we have

φ−11 (h1(x1(τ))) < h2(x2(τ)) < φ2(h1(x1(τ))),

and thus, for i = 1, 2,

1

1 + ε
αi(hi(xi(τ))) < ψi(h3−i(x3−i(τ))). (25)

By combining (7), (8), (24) and (25), we have

φ′(h1(x1(τ)))∇h1(x1(τ))f1(x1(τ), x2(τ), u1(τ)) > 0,

∇h2(x2(τ))f2(x1(τ), x2(τ), u2(τ)) > 0,

contradicting to the minimality of τ .

By summarizing the three cases above, the assumption
that at least one of the sets C1 and C2 is not robustly
forward invariant does not hold, and thus, the proof is
completed. 2

The following example demonstrates how to apply The-
orem 1 in the output-constrained control of second-order
systems.

Example 1. Consider the system

ẋ1 = f1(x1, x2),

ẋ2 = f2(x1, x2) + u (26)

where f1(x1, x2) = −x31/2 + x2 and f2(x1, x2) = x31 +
x2. The system output is y = x1. The objective of
this example is to design a controller such that the sys-
tem output y(t) does not violate the hard constraint
y(t) ≥ 0 for all y(t0) ≥ 0 and all t ≥ t0. Take h1 =
x1. Obviously, the barrier condition (7) is satisfied with
α1(r) = r3/2 and ψ1(r) = r. Let h2 = x2 and u =
−x2 − α2(x2), where α2(r) is used to assign the ISSf
gain φ2. Clearly, the barrier condition (8) is also satis-
fied with ψ2(r) = r3. Let α2(r) = cr with c > 0, and
one can select a sufficient large c to guarantee that the
small-gain condition (9) is satisfied, where φ1(r) = 3

√
2r

and φ2(r) = r3/c. Thus, there exists an extended class
K∞ function φ satisfying (13). According to Theorem
1, h(x(t)) = min{φ(h1(x1(t))), h2(x2(t))} ≥ 0 for al-
l t ≥ t0, if h1(x1(t0)) ≥ 0 and h2(x2(t0)) ≥ 0, and thus,
y(t) = x1(t) ≥ 0 for all t ≥ t0 by noting that φ is of
extended class K∞.

Remark 6 As can be seen in Example 1, the ISSf gain
φ2 can be assigned by tuning the function α2, which is
explicitly involved in the controller u. Thus, the control
engineers should assign the ISSf gain carefully so as to
meet the small-gain condition (9). Such an approach d-
iffers from [14, 22] in that it does not require the barrier
functions to be of the exponential form.

4 Conclusion

We have developed a small-gain theorem based on ISSf-
barrier functions for safety verification. It has been
shown that an interconnected system with two ISSf
subsystems is again ISSf if the absolute value of the
composition of ISSf gains of two subsystems is smaller
than that of the identity function. The proposed result
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has provided a relationship between the whole system
and its subsystems in the safety sense, though how to
effectively apply it to practical control design still needs
to be explored in the future.
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A Proof of Lemma 2

Suppose − 1
2 ≤ ρ0(r) < 0 for all r < 0 and 0 < ρ0(r) ≤ 1

2
for all r > 0. Otherwise, we take

ρ̂(r) =


max{− 1

2 , ρ0(r)}, if r < 0

0, if r = 0

min{ 12 , ρ0(r)}, if r > 0

to replace ρ0(r). Let ρ1(0) = 0 and

ρ1(r) =

{
ρ−1 (r), if r < 0

ρ+1 (r), if r > 0
(A.1)

with

ρ−1 (r) =

{
maxs∈[−2,r] ρ0(s) if − 1 ≤ r < 0;

maxs∈[r−1,−1] ρ0(s) if r < −1;

ρ+1 (r) =

{
mins∈[r,2] ρ0(s) if 0 < r ≤ 1;

mins∈[1,r+1] ρ0(s) if r > 1.

Since ρ0(r) < 0 for r ∈ [−2, 0),

lim
r→0−

ρ1(r) = max
s∈[−2,0]

ρ0(s) = 0;
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and analogously,

lim
r→0+

ρ1(r) = min
s∈[r,2]

ρ0(s) = 0.

Therefore, ρ1 is continuous at zero. Moreover, because
ρ1 is continuous at r = −1 and at r = 1, ρ1 is continuous
on R.

To get a desired function ρ satisfying the condition given
in Lemma 2, we take

ρ(r) =



∫ r+1

r
ρ1(s)ds, if r < −1;∫ 0

r
ρ1(s)ds, if − 1 ≤ r < 0;∫ r

0
ρ1(s)ds, if 0 ≤ r ≤ 1;∫ r

r−1 ρ1(s)ds if r > 1.

(A.2)

With the help of the proof of [7, Lemma A.2], we obtain
that ρ meets the first requirement of Lemma 2. Further-
more, since ρ1 is a continuous function, ρ is continuous-
ly differentiable on R. Note that ρ0(r) ≤ ρ1(r) < 0 for
r < 0, and 0 < ρ1(r) ≤ ρ0(r) for r > 0. As a result, it
is easy to see that ρ′(r) ≤ |ρ1(r)| ≤ 1

2 for all r ∈ R. The
second requirement given in Lemma 2 is met.

B Proof of Lemma 3

Define

ρ0(r) =
1

2
[r − φ1 ◦ φ2(r)]. (B.1)

According to (9),

φ1 ◦ φ2(r) > r − ρ0(r), if r < 0,

φ1 ◦ φ2(r) < r − ρ0(r), if r > 0;

and hence,

φ2(r) > φ−11 (r − ρ0(r)), ∀r < 0,

φ2(r) < φ−11 (r − ρ0(r)), ∀r > 0.

By Lemma 2, there exists a continuously differentiable
function ρ : R → R with ρ′(r) ≤ 1

2 such that ρ0(r) <
ρ(r) < 0 for each r < 0, and 0 < ρ(r) < ρ0(r) for each
r > 0. Without loss of generality, we assume |ρ(r)| < |r|.
Let φ(0) = 0 and

φ(r) =
1

ρ(r)

∫ r

r−ρ(r)
φ−11 (s)ds, ∀r 6= 0, (B.2)

which yields φ−11 (r) < φ(r) < φ−11 (r− ρ(r)) < φ2(r) for
all r < 0, and φ2(r) < φ−11 (r − ρ(r)) < φ(r) < φ−11 (r)
for all r > 0. Because φ−11 (0) = 0 and φ−11 is continuous

on R, limr→0+ φ(r) = limr→0− φ(r) = 0, which further
implies that φ(r) is continuous at zero, and consequent-
ly, φ(r) is continuous on R as well. Since ρ is continu-
ously differentiable on R, φ is continuously differentiable
on R\{0}. Moreover, with the proof of [7, Lemma A.1],
φ′(r) > 0 for all r ∈ R\{0}.
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