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Small-Gain Theorem for Safety Verification under
High-Relative-Degree Constraints
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Abstract—This paper develops a small-gain technique for the
safety analysis and verification of interconnected systems with
high-relative-degree safety constraints. To this end, a high-
relative-degree input-to-state safety (ISSf) approach is proposed
to quantify the influence of external inputs on the subsystem safe-
ty. With a coordination transformation, the relationship between
ISSf barrier functions (ISSf-BFs) and the existing high-relative-
degree (or high-order) barrier functions is established to simplify
the safety analysis under external inputs. With high-relative-
degree ISSf-BFs, a small-gain theorem is proposed for safety
verification. It is shown that, under the small-gain condition, the
compositional safe set is forward invariant and asymptotically
stable. The effectiveness of the proposed small-gain theorem is
illustrated on the output-constrained decentralized control of two
inverted pendulums connected by a spring mounted on two carts.

Keywords—Small-gain theorem, input-to-state safety, barrier
functions, high relative degree, interconnected systems.

I. Introduction
Safety is a fundamental property of practical control system-

s, such as air traffic management systems [1], industrial robots
[2], life support devices [3], and autonomous vehicles [4],
[5]. Ensuring safety is crucial for these safety-critical systems.
Over the past years, a set of approaches have been developed
for safety verification, including model checking [8], barrier
approaches [4], [6], [7], [39], and reachability analysis [1],
[40].

Barrier functions have become popular because they verify
safety with Lyapunov-like arguments, and avoid the compu-
tation of abstractions or reachable sets. The essential idea of
barrier function approaches is to find a scalar function whose
super-level set (or sub-level set, depending on the context) is
forward invariant and does not intersect the unsafe region.
In [6], a sum-of-square (SOS) optimization approach was
developed for the computational search of a barrier function.
In [4], [10], a promising barrier function, called the zeroing
barrier function (ZBF), was proposed, which requires only a
single super-level set of the barrier function to be invariant.
Under the ZBF condition, the safe set is not only forward
invariant, but also asymptotically stable, implying that the
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safe set is robust in the sense that the state will get into the
safe set, even if it is initialized outside this set. Later, several
variants of ZBFs were proposed, including nonsmooth barrier
functions [11], robust barrier functions [12], and high-relative-
degree (or high-order) barrier functions [13]–[16]. However,
synthesizing a barrier function for high-dimensional systems
remains challenging. One reason for this difficulty is that the
computational cost of finding a polynomial barrier function
via SOS optimization grows polynomially with respect to the
system dimension for fixed polynomial degrees, as indicated
in [6]. Since a complicated system can often be regarded
as an interconnection of subsystems, a feasible approach is
to construct barrier functions for the subsystems individually
and then compose them to analyze safety for the overall
interconnected system [17], [18], [20].

The small-gain technique is a fundamental tool for the
analysis of interconnected systems. The classical small-gain
theorem, pioneered by [21], [22], was originally established
from the input-output viewpoint with linear gains. A gen-
eralization of the small-gain theorem was presented in [23]
for feedback interconnections with nonlinear gains. In [24]–
[26], the nonlinear small-gain theorem was developed with
the help of the input-to-state stability (ISS) framework [27].
Over the past decade, the ISS small-gain theorem has been
generalized to switched systems [28], hybrid systems [29],
and large-scale networks [30]. Also, the small-gain theorem
is useful in various control designs, such as adaptive control
[31], event-triggered control [32], and output regulation [33].
Even though the small-gain theorem is important for system
analysis, there are few results in safety verification.

To develop a small-gain theorem for safety verification, one
must first address the characterization of subsystem safety.
Different from the zero-input systems studied in the early
stages of ZBFs [4], [10], the safety of an interconnected
subsystem is inevitably influenced by external inputs, such as
interconnection inputs from other subsystems and disturbance
inputs from the environment. Under these inputs, the super-
level set of a ZBF may no longer be forward invariant, and
therefore, a safety buffer or margin must be added between
the super-level set of the ZBF and the unsafe region. As
a counterpart of ISS in safety analysis, input-to-state safety
(ISSf) [34] can quantify how the safety is influence by external
inputs and how much safety buffer should be added in the
synthesis of a barrier function so as to handle the uncertainty
of external inputs. In [17], [34], two ISSf barrier functions
(ISSf-BFs) were extended from ZBFs to establish ISSf. The
equivalence of these ISSf-BFs has been shown in [17]. Also,
ISSf-BFs have been used in the recent paper [35] to design an
inverse optimal safety-critical controller.



2

Recently, small-gain theorems for safety verification have
been developed in [17], [18] based on relative-degree-one
ISSf-BFs (or similar concepts). Nevertheless, many practical
systems have high-relative-degree safety constraints, including
Euler-Largrange systems [49], automated vehicles [9], [16],
[50] and pendulum systems [13], [36]. Under high-relative-
degree safety constraints, it is difficult to synthesize a com-
positional barrier function with the techniques of [17], [18]
due to the high-order derivatives involved in the subsystem
barrier functions. Additionally, there are some other limitations
in [17], [18]. Firstly, the subsystem barrier function used in
[18] is actually a discrete-time ISS Lyapunov function defined
in [48]. In this result, all super-level or sub-level sets of
the compositional barrier function are required to be forward
invariant. However, this requirement cannot be met in some
scenarios, such as the adaptive cruise control problem in [4],
[9] and the safety-critical tracking control problem in Section
IV of this paper. Although [17] only requires one super-
level set to be forward invariant, it has not showed whether
the compositional safe set therein is asymptotically stable.
Therefore, this result cannot fully inherit the robustness of
ZBFs as in [4], [10].

The objective of this paper is to develop a small-gain
framework for safety analysis and verification when the relative
degree of safety constraints is larger than one. We aim at
solving the following two fundamental problems for the small-
gain framework:
• How to quantify the influence of unknown external

inputs on the safe set?
• How to compose the subsystem safety to verify safety

for the overall interconnected system?
The main contributions of this paper are summarized as

follows.
• We propose a high-relative-degree ISSf-BF to quantify

the influence of the external inputs on safe set. Addition-
ally, we introduce a novel coordination transformation
to simplify the proof of safety. Compared with the most
relevant result [15], in which the barrier functions are
independent of external inputs, we provide an explicit
expression to describe the relationship between the in-
variant set and the external inputs, and prove that this
set is asymptotically stable.

• We propose a small-gain theorem for the safety analysis
and verification of interconnected systems with distur-
bance inputs and high-relative-degree safety constraints.
Our result shows that, under the small-gain condition, the
compositional safe set with safety buffers is forward in-
variant and asymptotically stable simultaneously, which
implies that this invariant set inherits the robustness
of ZBFs as in [4], [10]. Compared with [17], [18],
our small-gain theorem is based on high-relative-degree
barrier functions. Also, we allow the state to get close
to the boundary of the compositional safe set, which is
beneficial for safety-critical control.

• We develop a comparison lemma to prove our main
result from an input-output viewpoint. In contrast to the
proofs of [17], [18], we avoid the explicit construction

of a compositional barrier function, which may be diffi-
cult to construct under high-relative-degree constraints.
Additionally, with this lemma, we do not need to assume
the interconnected system to be forward complete.

The remainder of this paper is organized as follows. In
Section II, we provide an ISSf approach to quantify the
influence of the unknown external inputs on the subsystem
safety. Then a small-gain theorem is developed in Section III
for the safety analysis and verification of feedback intercon-
nections of ISSf subsystems. The effectiveness of this result
is illustrated in Section IV with the decentralized control of
two inverted pendulums connected by a spring mounted on
two carts (called the pendulum-spring-cart system [36] for
simplicity) with output constraints. Finally, we summarize the
conclusions in Section V.

Notations. Throughout this paper, ‘◦’ denotes the composi-
tion operator, i.e., f ◦g(s) = f (g(s)); ‘T’ denotes the transpose
operator; α′(s) denotes the derivative of a continuously dif-
ferentiable function α with respect to s; R and Z denote the
set of real numbers and integers, respectively; R≥0 and Z≥0
denote the set of nonnegative real numbers and nonnegative
integers, respectively. Given a closed set S, denote by ∂S the
boundary of S. For any x in Euclidean space, |x| is its norm,
and |x|S = inf s∈S |x − s| denotes the point-to-set distance from
x to the set S. Denote by Lm

∞ the set of essentially bounded
measurable functions u : R≥0 → R

m. For any u ∈ Lm
∞, ‖u‖J

stands for the supremum norm of u on an interval J ⊆ R≥0 (i.e.,
‖u‖J = supt∈J |u(t)|), and we take ‖u‖ = ‖u‖[0,∞) for simplicity.
A continuous function γ: R≥0 → R≥0 with γ(0) = 0 is of
class K (γ ∈ K), if it is strictly increasing. A function γ ∈ K
is of class K∞ (γ ∈ K∞) if lims→+∞ γ(s) = +∞. A function
β : R≥0×R≥0 → R≥0 is of class KL (β ∈ KL), if for each fixed t,
the mapping s 7→ β(s, t) is of class K, and for each fixed s ≥ 0,
t 7→ β(s, t) is decreasing to zero as t → +∞. Since barrier
functions do not have the positive definiteness of Lyapunov
functions, we introduce the following extended comparison
functions accordingly. A continuous function γ : R → R with
γ(0) = 0 is of extended class K (γ ∈ EK) if it is strictly
increasing. In particular, a function γ ∈ EK is of extended class
K∞ (γ ∈ EK∞) if lims→+∞ γ(s) = +∞ and lims→−∞ γ(s) = −∞.
A function β : R×R≥0 → R is of extended class KL (β ∈ EKL),
if for each fixed t, the mapping s 7→ β(s, t) is of extended class
K, and for fixed s > 0 and s < 0, t 7→ β(s, t) is decreasing and
increasing to zero, respectively, as t → +∞.

II. ISSf Under High-Relative-Degree Safety Constraints
This section presents an ISSf approach for quantifying how

the safety is influenced by external inputs under high-relative-
degree safety constraints.

Consider the system

ẋ = f (x, d), x(0) = x0 (1)

where x ∈ Rn is the state, d ∈ Lm
∞ is the unknown external input

(may be the interconnection input from other interconnected
subsystems or the disturbance input from the environment),
and f : Rn → Rn is locally Lipschitz. For any x0 ∈ R

n and
d ∈ Lm

∞, the solution of (1), defined on some maximal interval
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I(x0, d), is denoted by x(t, x0, d) (and sometimes by x(t) for
simplicity if there is no ambiguity). System (1) is said to have a
finite escape time if x(t, x0, d) escapes to infinite at a finite time.
Moreover, system (1) is forward complete if I(x0, d) = R≥0.

Definition 1 (Invariance [37]). A set C is robustly forward
invariant if, for any x0 ∈ C and any d ∈ Lm

∞, x(t, x0, d) ∈ C
for all t ∈ I(x0, d). Moreover, if there is no external input (i.e.,
d ≡ 0), C is said to be forward invariant.

Definition 2 (Asymptotic Stability [45]). System (1) is uni-
formly globally asymptotically stable (UGAS) with respect
to a closed invariant set C if it is forward complete and the
following two properties hold:
• Uniform Stability. There exists δ ∈ K∞ such that, for any

ε ≥ 0,

|x(t, x0, d)|C ≤ ε, ∀t ≥ 0, ∀d ∈ Lm
∞

whenever |x0|C ≤ δ(ε).
• Uniform Attraction. For any r, ε > 0, there is a T > 0,

such that

|x(t, x0, d)|C ≤ ε, ∀t ≥ T, ∀d ∈ Lm
∞

whenever |x0|C < r.
Moreover, if there is no external input, system (1) is said to
be globally asymptotically stable (GAS) with respect to C.

Note that the uniform stability condition is equivalent to

|x(t, x0, d)|C ≤ ϕ(|x0|C), ∀x0 ∈ R
n, ∀t ≥ 0, ∀d ∈ Lm

∞ (2)

for some ϕ ∈ K∞. Moreover, according to [45, Proposition 2.5],
system (1) is UGAS with respect to a closed and invariant set
C if and only if it is forward complete and there exists β ∈ KL
such that

|x(t, x0, d)|C ≤ β(|x0|C, t), ∀x0 ∈ R
n, ∀t ≥ 0, ∀d ∈ Lm

∞. (3)

A. Preliminary on Barrier Functions
When there is no external input, the essential idea of safety

verification based on ZBFs is to find a scalar function h : Rn →

R for the zero-input system ẋ = f (x, 0) such that the closed
set

X = {x ∈ Rn : h(x) ≥ 0} (4)

is forward invariant and does not intersect the unsafe region Xu
(i.e., X ⊆ Rn\Xu). Such a set X is referred to as the safe set. As
indicated in [4], [10], X is forward invariant and GAS if h(x)
is continuously differentiable and satisfies the ZBF condition1

∇h(x) f (x, 0) ≥ −α(h(x)), ∀x ∈ Rn

with α ∈ EK. The forward invariance of X implies that ẋ =
f (x, 0) will be always safe if x0 ∈ X. On the other hand, by
the GAS of X,

|x(t, x0, 0)|X ≤ β(|x0|X, t), ∀x0 ∈ R
n, ∀t ≥ 0

1In this work, we assume that the barrier functions is global, namely, given
a set X = {x : h(x) ≥ 0}, h(x) → +∞ as |x|Rn\X → +∞, and h(x) → −∞ as
|x|X → +∞.

for some β ∈ KL, which implies that, if x0 < X, then i)
x(t, x0, 0) will be closer to X than x0 for all t ≥ 0; ii) x(t, x0, 0)
will get into X as t → +∞.

Because of the external input d, the super-level set X of a
ZBF is not forward invariant, which results in that the state
x(t, x0, d) of system (1) may leave X and then enter the unsafe
region Xu. A promising method to address this issue is the
ISSf.

Define a larger closed set

Xd = {x ∈ Rn : h(x) + ϕ(‖d‖) ≥ 0} (5)

with ϕ ∈ K∞.

Definition 3 (Input-to-State Safety [34]). System (1) is ISSf
on X if for any d ∈ Lm

∞ and any x0 in a subset of Xd, x(t, x0, d)
stays in Xd for all t ∈ I(x0, d).

As indicated in [34], if there is a continuously differentiable
function h : Rn → R such that

∇h(x) f (x, d) ≥ −α(h(x)) − γ(|d|), ∀x ∈ Rn (6)

with α ∈ EK∞ and γ ∈ K∞, then system (1) is ISSf. The
function h(x) satisfying (6) is referred to as the ISSf-BF.

The ISSf implies that the state x(t, x0, d) will always stay in
a larger set Xd, although it may leave the super-level set X of
h(x). Moreover, if the external input d is bounded, the distance
between ∂X and ∂Xd is also bounded. Therefore, if a safety
buffer larger than ϕ(‖d‖) is added in the synthesis of a barrier
function h(x) such that Xd does not intersect the unsafe region
Xu, then x(t, x0, d) will not enter Xu.

B. ISSf Barrier Functions with High Relative Degree
Note that the ISSf-BF h(x) satisfying (6) is relative-degree-

one in the sense that the external input d appears if we
differentiate h(x) one time. In this paper, we concentrate on
the situation where h(x) is high-relative-degree, namely, the
external input d explicitly appears until h(x) is differentiated r
(r > 1) times2.

For any Cr function h : Rn → R, define

η0(x) = h(x), ηk(x) = η̇k−1(x) + αk(ηk−1(x)), 1 ≤ k ≤ r (7)

where αk : R→ R is a Cr−k EK∞ function.

Definition 4. A Cr function h : Rn → R is an ISSf-BF with
relative degree r for system (1), if there exist α1, . . . , αr ∈ EK∞
and γ ∈ K∞ such that (7) and

ηr(x) ≥ −γ(|d|) (8)

hold for all x ∈ Rn and d ∈ Lm
∞.

The high-relative-degree ISSf-BF in Definition 4 is a variant
of the ZBF [10] with the consideration of external inputs, and
thus, inherits a good property of ZBFs that the state x(t, x0, d)
is allowed to get close to ∂C when it is inside C, which is
beneficial for safety-critical control. Moreover, a high-relative-
degree ISSf-BF h(x) satisfying (7) and (8) will reduce to the

2For the simplicity of illustration, we assume that all entries of d =
[d1, . . . , dm]T appear after h is differentiated r times.
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high-order barrier function (HOBF) of [15, Definition 2], if
there is no external input and the functions α1, . . . , αr in (7)
are relaxed to be EK functions. However, as indicated in the
following counterexample, it may be impossible for system (1)
with a non-zero input d to be ISSf, if α1, . . . , αr are relaxed
to be EK functions, similar to the definition in [15].

Example 1. Consider the second-order system

ẋ1 = − arctan(x1) + x2, ẋ2 = − arctan(x2) + d (9)

with safety constraints characterized by X = {(x1, x2) : x1 ≥

0} and a bounded external input d ≡ −π/2. Let h(x) = x1.
Clearly, h(x) satisfies (7) and (8) except that α1(s) = arctan(s)
and α2(s) = arctan(s) are EK functions. Let x1(0) = x2(0) =
1. Now, we show that x1(t) and x2(t) will tend to −∞. Note
that ẋ2 = − arctan(x2) − π/2 < 0, which implies that x2(t)
decreases to −∞ as t → +∞. By the continuity of x2(t), there
is a T ≥ 0 such that x2(t) ≤ −π/2 for all t ≥ T . Hence,
ẋ1(t) ≤ − arctan(x1) − π/2 < 0 for all t ≥ T , and thus, x1(t)
also tends to −∞ as t → +∞. In summary, it is impossible
for system (9) to be ISSf, even though the external input d is
bounded.

Analogous to ISS Lyapunov functions (see, e.g., [38]) that
have different equivalent definitions, one can redefine the high-
relative-degree ISSf-BF by replacing (8) with

|ηr−1(x)| ≥ φ(|d|)⇒ ηr(x) ≥ 0 (10)

for some φ ∈ K∞.

Lemma 1. Inequalities (8) and (10) are equivalent.

Proof. See Appendix I. �

Let

η∗k−1 = −α̂k ◦ γ(‖d‖), k = 1, . . . , r

be the safety buffer for ηk−1(x), where

α̂k(s) = −α−1
k ◦ α

−1
k+1 ◦ · · · ◦ α

−1
r (−s).

Take

µk(s) = αk(s + η∗k−1) − αk(η∗k−1), k = 1, . . . , r. (11)

Clearly, µk is of class EK∞. Define the sets

Sk−1 = {x ∈ Rn : ηk−1(x) ≥ 0}, (12)
Ck−1 = {x ∈ Rn : ηk−1(x) ≥ η∗k−1}. (13)

Recalling the set X in (4) and the set Xd in (5), we obtain
X = S0 and Xd = C0 with ϕ = α̂1◦γ. Moreover, S =

⋂r
k=1 Sk−1

and C =
⋂r

k=1 Ck−1 are the subsets of X and Xd, respectively.
Consider the coordination transformation

η̃k−1(x) = ηk−1(x) − η∗k−1 = ηk−1(x) + α̂k ◦ γ(‖d‖) (14)

for k = 1, . . . , r. Then the relationship between the high-
relative-degree ISSf-BF given in Definition 4 and the HOBF
of [15, Definition 2] is established in the following lemma.

Lemma 2. Let Sk−1 and Ck−1 (k = 1, . . . , r) be closed sets as
in (12) and (13), respectively. Suppose h(x) is a high-relative-
degree ISSf-BF satisfying (7) and (8). Then h̃(x) = h(x) − η∗0
is a HOBF satisfying

˙̃ηk−1(x) = −µk(η̃k−1(x)) + η̃k(x), k = 1, . . . , r − 1 (15)
˙̃ηr−1(x) ≥ −µr(η̃r−1(x)) (16)

where µk and µr are EK∞ functions given in (11).

The proof of this lemma is straightforward by combining
(7), (8), (11), (14). The main result of this section is given as
follows.

Theorem 1. Consider system (1) with safety constraints
characterized by the set X given in (4). Let Sk−1 and Ck−1,
k = 1, . . . , r, be the sets in (12) and (13), respectively. Suppose
h : Rn → R is an ISSf-BF with relative degree r, and satisfies
(7) and (8). Then, the following properties holds:
(i) system (1) is ISSf on X, and the set C =

⋂r
k=1 Ck−1 is

robustly forward invariant;
(ii) system (1) is UGAS with respect to C if it is forward

complete.

Proof. See Appendix II. �

One essential difference between Theorem 1 and the most
relevant result [15, Proposition 3] is that Theorem 1 quantifies
the effect of external inputs on the invariant set C, while [15,
Proposition 3] did not consider the influence of external inputs.
In other words, as can be seen in (13), our result provides an
explicit expression to describe the relationship between the
set C and the disturbance input d, and shows that this set is
forward invariant and UGAS simultaneously. Another minor
difference is that we assume system (1) to be forward complete,
rather than assuming that C is compact. This is motivated by
the fact that some safe sets may be non-compact (e.g., the safe
set of the adaptive cruise control problem in [4], [9]), while
the forward completeness of a control system can be easily
guarantee by the combination of control Lyapunov functions
(CLFs) and control barrier functions (CBFs) in the quadratic
program-based (QP-based) safety-critical control framework
[4], [9]. Also, the forward completeness assumption has been
widely employed in safety verification [4], [10] and stability
analysis [45], [52]. Moreover, if the safe set is compact, then
the forward completeness assumption is redundant.

The proof of Theorem 1 is much more difficult than that for
the relative-degree-one ISSf-BF in [34, Theorem 1] because of
the high-order derivatives involved in the ISSf-BFs. Although
the high-relative-degree ISSf-BF is similar to the HOBF of
[15], the proof of Theorem 1 cannot be completed by the
analysis of [15, Proposition 3]. This is mainly because [15,
Proposition 3] requires η0(x), . . . , ηr−1(x) in (7) to converge
to zero, which does not hold when the external input d is
non-zero. To handle this issue, we introduce the coordina-
tion transformation (14) to establish an explicit relationship
between the high-relative-degree ISSf-BF in Definition 4 and
the HOBF of [15]. In this way, we can prove Theorem 1 by the
analysis of the auxiliary HOBF condition (15) and (16) instead
of the original ISSf-BF. This analysis simplifies the proof and
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provides new insight for ISSf verification under high-relative-
degree safety constraints.

C. ISSf Control Barrier Function with High Relative Degree
Analogous to [34], we use the following system to discuss

the application of high-relative-degree ISSf-BFs in safety-
critical control:

ẋ = f (x) + g(x)w with w = u + d. (17)

Here, u ∈ Rm and d ∈ Rm represent the control input and the
disturbance entering the control channel, respectively.

Definition 5. Let h : Rn → R be a Cr function and η0(x), . . . ,
ηr−1(x) be functions satisfying (7) with α1, . . . , αr−1 ∈ EK∞.
Then h(x) is an ISSf control barrier function (ISSf-CBF) of
relative degree r for system (17), if there exist αr ∈ EK∞ and
γ ∈ K∞ such that

sup
u∈Rm

[L f ηr−1(x) + Lgηr−1(x)(u + d)] ≥ −αr(ηr−1) − γ(|d|) (18)

holds for all x ∈ Rn.

The following corollary is a direct result of Theorem 1.

Corollary 1. If system (17) has an ISSf-CBF satisfying (7)
and (18), then there exists a feedback law ψ(x) such that the
conclusions in Theorem 1 also hold for the closed-loop system
consisting of (17) and u = ψ(x).

Corollary 1 implies that the ISSf-CBF controller is not
sensitive to small changes in the control channel, in the sense
that a bounded input d cannot result in h(x)→ −∞. Thus, we
can prevent the state x(t, x0, d) from entering the unsafe region
Xu if a sufficiently large safety buffer is added in the control
synthesis.

Note that the ISSf-CBF is a worst-case design method, i.e., it
regards all external inputs as a factor bad for safety. However,
some external inputs may be good for safety. For example, in
the adaptive cruise control problem [4], [9], the wind opposing
the follower car’s velocity is an external input that can help
the car maintain safety. In such a scenario, the ISSf-CBF will
cancel the useful external input.

III. Small-Gain Theorem for Safety Verfication
The purpose of this section is to develop a small-gain theo-

rem for the safety verification of the following interconnected
system with high-relative-degree safety constraints:

ẋ1 = f1(x1, x2, d1), ẋ2 = f2(x1, x2, d2), (19)

where xi ∈ R
ni and di ∈ Lmi

∞ for i = 1, 2. Let n = n1 + n2,
x = [xT

1 , x
T
2 ]T, x0 = x(0), and d = [dT

1 , d
T
2 ]T. Suppose that the

safety constraints are characterized by the set

X = X1

⋂
X2 with Xi = {x ∈ Rn : hi(xi) ≥ 0} (20)

where hi(xi) is a Cr function.
Define

ηi,0(xi) = hi(xi), ηi,k(xi) = η̇i,k−1(xi) + αi,k(ηi,k−1(xi)) (21)

for i = 1, 2 and k = 1, . . . , r, where αi,k is a Cr−k EK∞
function. Suppose that hi is a high-relative-degree ISSf-BF for
the xi-system such that

η1,r(x1) ≥ φ1(h2(x2)) − γ1(|d1|), (22a)
η2,r(x2) ≥ φ2(h1(x1)) − γ2(|d2|) (22b)

where φi ∈ EK∞ and γi ∈ K∞. Let

η∗i,k−1 = min{φ̂i,k(−γ̂3−i,1(‖d‖)),−γ̂i,k(‖d‖)} (23)

be the safety buffer of ηi,k−1(xi), where

φ̂i,k(s) = α−1
i,k ◦ · · · ◦ α

−1
i,r ◦ (Id + σ) ◦ φi(s) (24)

γ̂i,k(s) = −α−1
i,k ◦ · · · ◦ α

−1
i,r ◦ (Id + σ−1)(−γi(s)) (25)

for some σ ∈ EK∞. Define

Si,k−1 = {x ∈ Rn : ηi,k−1(xi) ≥ 0}, (26)
Ci,k−1 = {x ∈ Rn : ηi,k−1(xi) ≥ η∗i,k−1} (27)

for i = 1, 2 and k = 1, . . . , r. Clearly, X = S1,0
⋂
S2,0.

A. Comparison Technique

The following lemma provides a useful comparison tech-
nique for establishing the result of this section.

Lemma 3. Let η : [0,T )→ R be a continuously differentiable
function such that

η̇(t) ≥ −α(η(t)) + w(t), ∀t ∈ [0,T ) (28)

with η(0) = η0, where α is a locally Lipschitz EK∞ function,
and w : R≥0 → R is a locally essentially bounded function.
Then there exists an EKL function β : R × R≥0 → R with
β(s, 0) = s such that

η(t) ≥ β(η0 − η
∗, t) + η∗, ∀t ∈ [0,T ) (29)

where η∗ = α−1(inft∈[0,T ) w(t)).

Proof. See Appendix III. �

Lemma 3 differs from the standard comparison lemma (see,
e.g., [46, Lemma 3.4]) in two distinct ways: i) it involves an
additional function, w(t), which can be used to describe the
influence of external inputs on the safe set; and ii) β is an EKL
function, where the first argument of β captures whether the
system is initialized safely. By using Lemma 3, we can analyze
the subsystem safety of an interconnected system without any
forward completeness assumptions. This is useful because,
as demonstrated in Example 2 below, an interconnection of
two forward complete subsystems may exhibit finite escape
phenomenon. Therefore, we cannot assume the interconnected
system to be forward complete in advance. Additionally,
the estimate in (29) is less conservative than that of [35,
Definition 2], where the lower bound of η was estimated as
η(t) ≥ β(η0, t) + η∗ for all t ∈ [0,T ).
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Example 2. Consider the interconnected system

ẋ1 = −
2x3

1

|x1|
+

2x3
2

|x2|
− 2x1x2, (30a)

ẋ2 = −
x3

2

|x2|
+

3x3
1

|x1|
. (30b)

Suppose that system (30) needs to satisfy x1(t) ≥ 0 and x2(t) ≥
0 simultaneously for all t ≥ 0. Clearly, both subsystems (i.e.,
ẋ1 = −2x3

1/|x1| and ẋ2 = −x3
2/|x2|) are safe, forward complete,

and asymptotically stable with respect to the safe set when
there is no interconnection. Let x1(0) = x2(0) = −1. Then

d
dt

(x1 + x2) = −(x1 + x2)2,

which implies

x1(t) + x2(t) = −
2

1 − 2t
.

Therefore, at least one of the states of (30) escapes to −∞
before t = 0.5s.

B. Small-Gain Theorem under High-Relative-Degree Safety
Constraints

This subsection presents a small-gain theorem for the safety
verification of an interconnection of two ISSf subsystems with
high-relative-degree constraints.

Theorem 2. Consider the interconnected system (19) with
safety constraints characterized by the set X in (20). Let Si,k−1
and Ci,k−1 be the sets in (26) and (27), respectively. Denote by
J(x0, d) the maximal interval on which the distance between
x(t) and Rn\X is finite. Suppose that, for i = 1, 2, the xi-
subsystem has a relative-degree-r ISSf-BF hi(xi) satisfying (21)
and (22). If

|φ̂1,1 ◦ φ̂2,1(s)| < |s|, ∀s ∈ R\{0}, (31)

then
(i) the solution x(t) is right maximally defined on I(x0, d) =

J(x0, d);
(ii) system (19) is ISSf on X, and the set C =⋂

i=1,2
⋂r

k=1 Ci,k−1 is robustly forward invariant;
(iii) system (19) is UGAS with respect to C if J(x0, d) = R≥0.

Proof. See Appendix IV. �

The assumption that the distance between x(t) and Rn\X is
finite implies that the solution x(t) is well-defined on J(x0, d)
if it is inside X. This assumption can be guaranteed by CLFs
in the QP-based safety-critical control framework [4], [9].

Now, we briefly outline the main idea of proving Theorem
2 for readability. As indicated in (21) and (22), the barrier
condition is a feedback loop consisting of two interconnected
chains. For each chain, the output is hi(xi), while the input
is the pair (h3−i(x3−i), di). Furthermore, proving forward in-
variance and asymptotic stability of a safe set under external
inputs is essentially equivalent to analyzing how external
inputs affect the boundedness and convergence of an individual
ISSf-BF. This observation motivates us to prove Theorem

2 from an input-output viewpoint, which involves analyzing
the boundedness and the convergence of the individual ISSf-
BF hi(xi), instead of constructing a compositional ISSf-BF.
Specifically, the proof is divided into the following three steps.
• Step 1: For each k = 1, . . . , r, apply Lemma 3 to η̇i,k−1 =
−αi,k(ηi,k−1) + ηi,k to estimate how the boundedness and
the convergence of ηi,k−1 are influenced by ηi,k.

• Step 2: For each chain, establish a relationship be-
tween its input (h3−i(x3−i), di) and the boundedness or
the convergence of its output hi(xi) recursively with
the boundedness or the convergence of ηi,0, . . . , ηi,r−1
estimated in Step 1.

• Step 3: Use the small-gain condition (31) to eliminate
the influence of the feedback interconnection so as to
make that the boundedness and the convergence of hi(xi)
are only dependent on the disturbance input (d1, d2) of
interconnected system (19).

For the case φ1(s) ≡ 0 or φ2(s) ≡ 0, we have φ̂1,1◦φ̂2,1(s) ≡ 0,
and thus, the small-gain condition (31) always holds. There-
fore, we have the following corollary for the cascade connec-
tion of two ISSf subsystems.

Corollary 2. Consider the cascade system

ẋ1 = f1(x1, x2, d1), ẋ2 = f2(x2, d2) (32)

with safety constraints characterized by the set X in (20). Let
J(x0, d) be the maximal interval on which the distance between
x(t) and Rn\X is finite. Suppose that h1(x1) and h2(x2) are
relative-degree-r ISSf-BFs satisfying (21), (22a) and

η2,r(x2) ≥ −γ2(|d2|).

Then the conclusions of Theorem 2 also hold for system (32)
with η∗2,k−1 in (23) modified as η∗2,k−1 = −γ̂2,k(‖d‖).

C. Relation to Other Compositional Approaches
The verification of an invariant safe set for interconnected

systems has been investigated in [17]–[20]. A common feature
of these results is that they are based on relative-degree-one
barrier functions (or similar notions). Additionally, most of
these results (except [17]) require that all super-level or sub-
level sets of the compositional barrier function are forward
invariant, which results in that the state cannot get close to the
unsafe region, even if it is sufficiently safe.

In [19, Theorem 1], a dissipativity approach was proposed
for the safety verification of interconnected systems with an
arbitrary number of passive subsystems. Therein, the subsys-
tems were assumed to have a polynomial storage function
S i : Rni → R≥0 satisfying

∇S i(xi) fi(xi,wi, di) ≤ wT
i xi − ρi(xi) + σi(xi),

for i = 1, . . . , N, where wi is the interconnection input used to
characterize the influence of other subsystems, ρi is a positive-
definite function, and σi : Rni → R is used to capture the
influence of disturbances. The idea of [19, Theorem 1] is
to find a Lyapunov function V(x) =

∑N
i=1 ciS i(xi) satisfying

V̇(x) ≤ 0 such that the safe set C = {x ∈ Rn : V(x) ≤ 1}
is forward invariant and does not intersect the unsafe region
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Xu. Here, the parameters c1, . . . , cN can be computed by SOS
optimization. Note that [19] has not shown how the passivity
is related to the subsystem safety. It is unclear how the safety
of an interconnected system is influenced by the safety of
its subsystems. In contrast, we use the ISSf to characterize
the subsystem safety. By Theorem 2, we can establish a
relationship between the safety of an interconnected system
and the safety of its subsystems.

In [20, Corollary 2], another compositional approach was
proposed by assuming that the subsystems have a barrier
function satisfying

∇Bi(xi) fi(xi,wi, di) ≤ γi(wi, xi),

for some functions γi : Rmi × Rni → R. It was shown that
the set C = {x ∈ Rn : B(x) ≤ 0} with B(x) =

∑N
i=1 Bi(xi)

is forward invariant if
∑N

i=1 γi(wi, xi) ≤ 0. An essential d-
ifference between [20, Corollary 2] and Theorem 2 is the
boolean logic for composing subsystem barrier functions or
subsystem safety. Specifically, [20] composed the subsystem
barrier functions using the

∑
operator, which corresponds to

the OR logical operator, as demonstrated in [51]. From this
viewpoint, B(x) =

∑N
i=1 Bi(xi) ≤ 0 implies only that at least

one subsystem satisfies Bi(xi) ≤ 0, rather than all subsystems
satisfying Bi(xi) ≤ 0. In contrast, as can be seen in (20), we
composed the subsystem safe sets X1 and X1 using the AND
logic. Therefore, if the state x(t) cannot leave the compositional
safe set X defined in (20), then it also cannot leave X1 and
X2.

In [18, Theorem 5.5], a discrete-time small-gain theorem
was proposed for the synthesis of a compositional barrier func-
tion. Therein, the subsystem barrier function Bi : Rni → R≥0
is assumed to be non-negative and satisfy

Bi( fi(xi,wi, ui)) ≤ max{σi(Bi(xi)), γwi(‖wi‖)} (33)

where ui is the control input, σi and γwi are K∞ functions with
κi(s) ≤ s for all s ≥ 0. Note that (33) is equivalent to

Bi(xi) ≥ σ−1
i ◦ γwi(‖wi‖)

⇒ Bi( fi(xi,wi, ui)) − Bi(xi) ≤ −(Id − σi)(Bi(xi)),

which implies that Bi(xi) is an discrete-time ISS Lyapunov
function originally defined in [48, Remark 3.3]. Therefore,
[18, Theorem 5.5] is actually a discrete-time Lyapunov small-
gain theorem. More recently, a continuous-time small-gain
theorem was proposed in [17, Theorem 1] by using relative-
degree-one ISSf-BFs to capture the subsystem safety. This
result can be regarded as a special version of the second
conclusion of Theorem 2 with r = 1. The essential difference
between Theorem 2 and [17] or [18] lies in that our result is
based on high-relative-degree ISSf-BFs, which implies we can
handle the control problems with high-relative-degree safety
constraints. Also, we can quantify the influence of disturbances
on the compositional safe set. As shown in (23) and (27), we
have derived an explicit expression to describe the relationship
between the compositional invariant set C =

⋂
i=1,2

⋂r
k=1 Ci,k−1

and the disturbance input d, and showed that C is UGAS,
implying that Theorem 2 inherits the robustness of ZBFs as in
[4], [10]. This is different from [18, Theorem 5.5], where no

disturbance was involved, and [17, Theorem 1], where only
forward invariance was proved. Finally, the idea of proving
Theorem 2 is also different from [17, Theorem 1] and [18,
Theorem 5.5] whose proofs are based on the construction of
a compositional barrier function. In contrast, our proof relies
on the boundedness and convergence analysis of subsystem
barrier functions, and thus, avoids an explicit construction of
a compositional barrier function.

IV. Illustrative Example

In this section, we illustrate the effectiveness of the proposed
small-gain technique through the decentralized tracking control
of the pendulum-spring-cart system [36, Section 7]:

ẋi,1 = xi,2 (34a)

ẋi,2 =
g
wl

xi,1 −
m
M

x2
i,2 sin xi,1 −

ak(a − wl)
wml2

xi,1

+
kb(a − wl)

wml2
+

1
wml2

(ui + di) +
ak(a − wl)

wml2
x3−i,1 (34b)

for i = 1, 2, where xi,1 = θi and xi,2 = θ̇i denote the angular
displacement and the angular velocity, respectively, ui is the
control torque applied to the pendulum, di is the disturbance
in the control channel with |di| ≤ d̄, m and l are the mass
and the length of the pendulum, M is the mass of the car,
w = m/(M + m), k is the spring constant, L is natural length
of the spring, a ∈ [0, l] is the distance from the pivot of the
spring to the bottom of the pendulum, g is the gravitational
acceleration, and b is the distance between the cars. Choose g
= 9.8 m/s2, l = 1 m, k = 1 n/m. M = 15 kg, m = 5 kg, b =
2 m and a = 0.75 m.

Suppose that the safety constraint of pendulum i is θi(t) ≥
θi, where θi denotes the lower bound of θi(t). The goal is to
make the output θi(t) of the pendulum track its own reference
trajectory yr,i, while simultaneously avoiding the violation of
safety constraints.

A. Nominal Tracking Controller

We design a nominal tracking controller with the backstep-
ping technique [41]. Consider the coordination transformation

zi,1 = xi,1 − yr,i, zi,2 = xi,2 −$i

where $i = −ri,1zi,1 + ẏri with ri,1 > 0 as a designed parameter.
Then the nominal controller is chosen as

ûi = wml2
(
− ri,2zi,2 −Wi −

1
4wml2

z2
i,2

−
ak(a − wl)

wml2
(zi,2 + yr,3−i)

)
(35)

where ri,2 > 0 is a designed parameter, and

Wi = zi,1 − $̇i +
g
wl

xi,1 −
m
M

x2
i,2 sin xi,1

−
ak(a − wl)

wml2
xi,1 +

kb(a − wl)
wml2

.
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Clearly, the derivative of the Lyapunov function candidate
Vi = (z2

i,1 + z2
i,2)/2 along the solution of the closed-loop system

consisting of (34) and (35) satisfies

V̇i ≤ −λi(Vi) + ϕi(V3−i) + δi(|d|)

where λi(s) = min{ri,1, ri,2}s, ϕi(s) =
ak(a−wl)

2wml2 s, δi(s) = 1
wml2 s2.

Choose sufficiently large λi for i = 1, 2, such that λ−1
1 ◦ ϕ1 ◦

λ−1
2 ◦ ϕ2(s) < s for all s > 0, and according to [42, Theorem

5.1], the tracking error zi,1 is driven to a small neighbourhood
of zero.

B. Control Barrier Function
Let hi(xi) = xi,1 − θi, which is clearly with relative degree

two. Then we can establish (21) and (22) with

ηi,0(xi) = hi(xi)
ηi,1(xi) = η̇i,0(xi) + αi,1(hi)
ηi,2(xi) ≥ ψi,1(xi) + ψi,0(xi)ui + φi(h3−i(x3−i)) − γi(|di|).

where

ψi,1(xi) =
g
wl

xi,1 −
m
M

x2
i,2 sin xi,1 + α′i,1(hi)xi,2

+ αi,2(ηi,1) −
k(a − wl)

wml2
(axi,1 − b − θ3−i),

ψi,0(xi) =
1

wml2
, φi(s) =

ak(a − wl)
wml2

s, γi(s) =
1

wml2
s.

Herein, αi,1 and αi,2 are EK∞ functions that can be tuned by
designers. Inspired by [4], [9], [10], [34], [43], any control
input ui in the set

Ui = {ui ∈ R : ψi,1(xi) + ψi,0(xi)ui ≥ 0} (36)

renders

ηi,2(xi) ≥ φi(h3−i(x3−i)) − γi(|di|).

Take αi,k(s) = ci,k s for i = 1, 2 and k = 1, 2. Select a sufficiently
large ci,k such that (31) is satisfied. Then, according to Theorem
2, the set C =

⋂
i=1,2

⋂
k=1,2 Ci,k−1 with Ci,k−1 defined in (27) is

forward invariant. Thus, ηi,k−1(xi(t)) ≥ η∗i,k−1 always holds for
all t ≥ 0 if x(0) ∈ C. Moreover, if there is no disturbance, the
system always satisfies the safety constraint h1(x1) ≥ 0 and
h2(x2) ≥ 0. On the other hand, if x(0) < C, x(t) will get into C
as t → +∞.

C. Simulation Results
With (35) and (36), we can establish the QP-based controller

as in [4], [9], [34]:

u∗i = arg min
ui∈R

|ui − ûi|
2,

s.t. ψi,1(xi) + ψi,0(xi)ui ≥ 0.

We first study the system performance when there is no
disturbance. Set θ1 = θ2 = −0.3, yr,1 = − sin(t + π/4) and
yr,2 = sin(t). Fig. 1 illustrates the trajectories of x1,1(t) and
x2,1(t) with a safe initialization condition (x1,1(0), x1,2(0)) =
(x2,1(0), x2,2(0)) = (0.5, 1.0) and control parameters r1,1 =

r2,1 = 4, r1,2 = r2,2 = 2, c1,1 = c2,1 = 12, and c1,2 = c2,2 = 4.
Clearly, x1,1(t) and x2,1(t) always stay inside the safe region,
and moreover, the tracking task is achieved if the reference
signal is inside the safe region. Fig. 2 shows the simulations
of x1,1(t) under the same control parameters of Fig. 1 but
(x1,1(0), x1,2(0)) = (−0.8, 1.0). As indicated in the time interval
from t = 0 s to t = 1 s, even though x1,1(t) is initialized near
the reference signal, it tends to the safe region at first, rather
than tracking the reference signal. Then it does not violate the
safety constraint any more after entering the safe region. In
contrast, the safety cannot be guaranteed after removing the
CBF constraints (see the green dash line in Fig. 2).

Now we check how the disturbance input affects the system
performance. Let d = (d1, d2). The simulations of x1,1(t)
under different disturbance inputs are given in Fig. 3. It is
obvious that the existence of disturbances degrades the tracking
performance. Additionally, using (23), we can compute that
η∗1,1 ≈ −0.169 and η∗1,1 ≈ −0.337 for d ≡ (−10,−10) and
d ≡ (−20,−20), respectively. As can be seen in Fig. 3, when
the disturbance is non-zero, x1,1 violates the safety constraint
x1,1 ≥ θ1, but always satisfies x1,1 ≥ θ1 + η∗1. Therefore, if one
has the opportunity to redesign the controller, it is possible
to ensure safety by adding sufficient large safety buffer in the
synthesis of a barrier function. For example, if the disturbance
bound is known, one can take h̃i(xi) = xi,1 − θi + η∗1,1 as a new
barrier function.

0 1 2 3 4 5 6 7 8 9 10

-1

-0.5

0

0.5

1

 

 

x1

x2

yr1 and yr

unsafe region

x2,1

yr,1 and yr,2

x1,1

Fig. 1. Tracking results of x1,1(t) and x2,1(t) under d ≡ (0, 0).
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u1(t)=u1*(t)uuuu.

u1(t)=u1*(t)

yri

unsafe region

Fig. 2. Tracking results of x1,1(t) under d ≡ (0, 0) with different control laws.
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x1,1 under d=(0,0) dddd

d=(-10,-10)

d=(-20,-20)

yri

unsafe region

x1,1 under d = (0, 0)

x1,1 under d = (-10, -10)
x1,1 under d = (-20, -20)

yr,1

Fig. 3. Tracking results of x1,1(t) under different disturbance inputs.

V. Conclusions
In this work, we developed a small-gain technique for

the safety verification of interconnected systems under high-
relative-degree safety constraints. We proposed a high-relative-
degree ISSf approach to quantify the influence of external
inputs on the subsystem safety. A relationship between the
high-relative-degree ISSf-BFs and HOBFs was given to sim-
plify the ISSf analysis. With the help of high-relative-degree
ISSf-BFs, a small-gain theorem was developed for the safety
analysis and verification of interconnected systems. Finally, the
decentralized control of a pendulum-spring-cart system with
output constraints was used to illustrate the effectiveness of
our result.

Appendix I: Proof of Lemma 1
(8) ⇒ (10). According to (7) and (8),

ηr−1(x) ≤ α−1
r (−γ(|d|)/c)⇒ η̇r−1(x) + (1 − c)αr(ηr−1(x)) ≥ 0,

ηr−1(x) ≥ α−1
r (γ(|d|)/c)⇒ η̇r−1(x) + (1 + c)αr(ηr−1(x)) ≥ 0

where c ∈ (0, 1) is a constant. Let

φ(s) = max{−α−1
r (−γ(s)/c), α−1

r (γ(s)/c)},
σ(s) = max{(1 − c)αr(s), (1 + c)αr(s)}.

Clearly, φ is a K∞ function, and σ is an EK∞ function. Thus,
(10) follows by taking ηr(x) = η̇r−1(x) + σ(ηr−1(x)).

(10) ⇒ (8). According to (10), if |ηr−1(x)| ≤ φ(|d|), then

ηr(x) = αr(ηr−1(x)) + ∇ηr−1(x) f (x, d)
≥ αr(−φ(|d|)) + ∇ηr−1(x) f (x, d)
≥ −γ(|d|)

where

γ(s) = −αr(−φ(s)) − inf
|ηr−1(x)|≤φ(s),|d|≤s

min{0,∇ηr−1(x) f (x, d)};

on the other hand, if |ηr−1(x)| ≥ φ(|d|), then ηr(x) ≥ 0 ≥ −γ(|d|).
The rest is to show γ ∈ K∞. Because φ is a K∞ function, the
set {x ∈ Rn : |ηr−1(x)| ≤ φ(s)} is compact for fixed s ≥ 0, and
thus, the term inf |ηr−1(x)|≤φ(s),|d|≤s min{0,∇ηr−1(x) f (x, d)} is well-
defined, non-negative and non-increasing for all s ≥ 0. More-
over, because αr ∈ EK∞ and φ ∈ K∞, γ(s) is strictly increasing

and tends to +∞ as s→ +∞. Additionally, with (10), we have
ηr(x) = ∇ηr−1(x) f (x, 0) + αr(ηr−1(x)) ≥ 0 whenever |d| = 0,
which implies that inf |ηr−1(x)|≤φ(s),|d|≤s min{0,∇ηr−1(x) f (x, d)} is
zero at s = 0. Consequently, γ is a K∞ function.

Appendix II: Proof of Theorem 1
A. Proof of (i) of Theorem 1

By applying [15, Proposition 1] to the auxiliary HOBF
condition (15) and (16), we have

η̃k−1(x(t)) = ηk−1(x(t)) − η∗k−1 ≥ 0, ∀t ≥ 0, ∀x0 ∈ C

which implies that x(t) always stay in the set Ck−1 for each
for k = 1, . . . , r. Therefore, C is robustly forward invariant.
Because C is a subset of Xd = C0, x(t, x0, d) cannot leave Xd
for all x0 ∈ C, which further implies the ISSf of system (1) on
the set X = S0.

B. Proof of (ii) of Theorem 1
Let

Ṽk−1(x) = max{0,−η̃k−1(x)}, k = 1 . . . , r. (37)

Since −η̃k−1(x) ≤ 0 whenever x ∈ Ck−1, (37) is equivalent to

Ṽk−1(x) =

{
0, if x ∈ Ck−1;
−η̃i,k−1(xi), if x ∈ Rn\Ck−1.

Because Ṽk−1 = max{0,−η̃k−1} ≥ −η̃k−1, it follows from (15)
and (16) that

˙̃Vk−1(x) ≤ µk(−Ṽk−1(x)) + Ṽk(x), k = 1, . . . , r − 1, (38)
˙̃Vr−1(x) ≤ µr(−Ṽr−1(x)). (39)

Consider the comparison system
ṁ0
ṁ1
· · ·

ṁr−1

︸    ︷︷    ︸
ṁ

=


µ1(−m0) + m1
µ2(−m1) + m2

· · ·

µr(−mr−1)

︸                 ︷︷                 ︸
F(m)

(40)

with [m0(0), . . . ,mr−1(0)]T = [Ṽ0(x(0)), . . . , Ṽr−1(x(0))]T . Be-
cause the vector field F is quasi-monotone increasing3, by
the vectorial comparison lemma (see, e.g., Lemma 2.3 of
[44, Chapter 9]), Ṽk−1(x(t)) ≤ mk−1(t) for all t ≥ 0 with
k = 1, . . . , r. Moreover, from [15, Proposition 3], system (40)
is asymptotically stable. Let Ṽ(x) = maxk=1,...,r Ṽk−1(x). With
[45, Proposition 2.5], there exists β ∈ KL such that

Ṽ(x(t)) ≤ |m(t)| ≤ β(Ṽ(x0), t), ∀t ≥ 0. (41)

Take

ψ(s) = inf
|x|C≥s

Ṽ(x), ψ̄(s) = sup
|x|C≤s

Ṽ(x), ∀s ≥ 0.

3As indicated in [44, p.314], a vector field F : Rr → Rr is said to be
quasi-monotone increasing, if Fk(x) ≥ Fk(y) for every k = 1, . . . , r and any
two points x, y ∈ Rr satisfying i) xp = yp if p = k, and ii) xp ≥ yp if p , k.
Herein, the subscript represents the index of entries.
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Note that V(x) is zero inside C, positive for all x ∈ Rn\C, and
tends to +∞ as |x|C → +∞. Thus, ψ and ψ̄ are continuous, non-
decreasing and unbounded on R≥0, and satisfy ψ(0) = ψ̄(0) =

0. Choose functions α, ᾱ ∈ K∞ such that α(s) ≤ ψ(s)/c and
ᾱ(s) ≥ cψ̄(s) with c > 1. Therefore,

α(|x|C) ≤ ψ(|x|C) ≤ V(x) ≤ ψ̄(|x|C) ≤ ᾱ(|x|C). (42)

Then, with (41),

|x(t)|C ≤ α−1(β(ᾱ(|x0|C), t)), ∀t ≥ 0, (43)

which, together with (3), implies that system (1) is UGAS with
respect to C.

Appendix III: Proof of Lemma 3
From (28),

η̇(t) ≥ −α(η(t)) + α(η∗), ∀t ∈ [0,T ). (44)

Consider its comparison equation

ẏ = −α(y) + α(η∗), y(0) = η0. (45)

Claim 1. The comparison equation (45) has a unique solution
y(t) defined on R≥0. Moreover,

y(t) = β(y0 − η
∗, t) + η∗ (46)

where β : R×R≥0 → R is of class EKL and satisfies β(s, 0) = s.

Then the conclusion of Lemma 3 follows, by applying Claim
1 and the standard comparison lemma [46, Lemma 3.4] to (44).
Thus, the rest is to prove this claim.

Proof of Claim 1. The local Lipschitzness of α implies that
(45) has a unique solution y(t) for each y0 ∈ R. Since y = η∗ is
an equilibrium point of (45) and ẏ(t) < 0 (resp. ẏ(t) > 0) when
y(t) > α−1(w) (resp. y(t) < α−1(w)), it follows that −|y0| ≤

y(t) ≤ |y0|. Therefore, the solution of (45) is bounded and can
be extended indefinitely.

Take ỹ = y − η∗, and then (45) can be rewritten as

˙̃y = −α̂(ỹ), ỹ(0) = y0 − η
∗ (47)

where α̂(s) = α(s + η∗) − α(η∗) with α̂(0) = 0 is also a locally
Lipschitz EK∞ function. Note that ỹ(t) ≡ 0 if ỹ0 = 0, since
ỹ = 0 is an equilibrium of (47). Without loss of generality, we
assume ỹ0 , 0 in the following. By integration, the solution
ỹ(t) of (47) satisfies

−

∫ ỹ(t)

ỹ(0)

dr
α̂(r)

=

∫ t

0
dτ. (48)

Define, for any s ∈ R\{0},

η(s) =

 −
∫ s

1
dr
α̂(r) , if s > 0

−
∫ s
−1

dr
α̂(r) , if s < 0

(49)

which is strictly decreasing on (0,+∞) and strictly increasing
on (−∞, 0). From the uniqueness of the solution of (47), it
follows that ỹ(t) tends to zero if and only if t tends to infinity,
and thus, ỹ(t) ≥ 0 (resp. ỹ(t) ≤ 0) for all t ≥ 0 if ỹ0 ≥ 0

(resp. ỹ0 ≤ 0). Recalling (48) and (49), the solution ỹ(t) of
(47) satisfies

η(ỹ(t)) − η(ỹ(0)) = t.

Let

β(s, t) =

{
η−1(η(s) + t), if s , 0,
0, if s = 0.

Then ỹ(t) = β(ỹ(0), t), which implies (46) for all t ≥ 0. The rest
is to show that β is of class EKL. Since α̂ is locally Lipschitz,
for each s ∈ R\0, |α̂(s)| ≤ K|s|. Consequently,

lim
s→0+

η(s) = lim
s→0+

∫ 1

s

dr
α̂(r)

≥ lim
s→0+

∫ 1

s

dr
Kr

= +∞,

lim
s→0−

η(s) = − lim
s→0−

∫ s

−1

dr
α̂(r)

≥ − lim
s→0−

∫ s

−1

dr
Kr

= +∞.

As a result,

lim
s→+∞

η−1(s) = 0.

Since η and η−1 are continuous functions, β is also continuous.
For each fixed t ≥ 0,

∂

∂s
β(s, t) =

η′(s)
η′(β(s, t))

=
α̂ ◦ η−1(η(s) + t)

α̂(s)
> 0,

and thus, β is strictly increasing on s. In addition,

∂

∂t
β(s, t) =

1
η′(β(s, t))

= −α̂ ◦ η−1(η(s) + t).

Therefore, ∂β(s, t)/∂t < 0 for each fixed s > 0 and ∂β(s, t)/∂t >
0 for each s < 0. Because lims→+∞ η

−1(s) = 0, β(s, t) decreases
and increases to zero for each fixed s > 0 and s < 0,
respectively, as t tends to +∞. �

Appendix IV: Proof of Theorem 2
In order to prove Theorem 2, we introduce a useful inequal-

ity, that is, for any functions γ, σ ∈ EK∞ and any real numbers
a, b,

γ(a + b) ≥ min{γ ◦ (Id + σ)(a), γ ◦ (Id + σ−1)(b)}. (50)

This inequality is extended from [24, Inequality (6)] by re-
moving the positive definiteness assumption. It can be verified
by combining the following two cases: i) if b ≥ σ(a), then
γ(a + b) ≥ γ ◦ (Id + σ)(a); and ii) if b ≤ σ(a), then
γ(a + b) ≥ γ ◦ (Id + σ−1)(b).

A. Proof of (i) of Theorem 2
Suppose that, for any T ∈ J(x0, d), the solution x(t) of

system (19) is right maximally defined on [0,T ). Let

Vi,k−1(xi) = max{0,−ηi,k−1(xi)} (51)

for i = 1, 2 and k = 1, . . . , r. From (21) and (26), we have the
following two cases:
• if xi ∈ Si,k−1, Vi,k−1(xi) = 0, and thus,

V̇i,k−1(xi) = 0 ≤ αi,k(−Vi,k−1(xi)) + Vi,k(xi);
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• if xi < Si,k−1, Vi,k−1(xi) = −ηi,k−1(xi), and thus, by
combining (21) and (51),

V̇i,k−1(xi) = −η̇i,k−1(xi)
= αi,k(ηi,k−1(xi)) − ηi,k

≤ αi,k(ηi,k−1(xi)) + max{0,−ηi,k}

= αi,k(−Vi,k−1(xi)) + Vi,k.

Consequently,

V̇i,k−1(xi) ≤ αi,k(−Vi,k−1(xi)) + Vi,k(xi), ∀xi ∈ R
ni . (52)

By applying Lemma 3 to (52), with taking η = −Vi,k−1, α =
αi,k, and w = −Vi,k, there is an EKL function βi,k satisfying
βi,k(s, 0) = s such that

Vi,k−1(xi(t))

≤ βi,k

(
Vi,k−1(0) + α−1

i,k (−‖Vi,k‖[0,T )), t
)
− α−1

i,k (−‖Vi,k‖[0,T )).
(53)

Since the mapping t 7→ βi,k(s, t) is strictly increasing (or
decreasing) for each s < 0 (or s > 0),

‖Vi,k−1‖[0,T ) ≤ max{Vi,k−1(0),−α−1
i,k (−‖Vi,k‖[0,T ))} (54)

for k = 1, . . . , r. On the other hand, by combining (22) and
(50), there is a σ ∈ EK∞ such that

ηi,r(xi) ≥ min{(Id + σ) ◦ φi(η3−i,0(x3−i)), (Id + σ−1)(−γi(|di|))}.

Therefore,

‖Vi,r‖[0,T ) = sup
t∈[0,T )

max{0,−ηi,r(xi(t))}

≤ max{−(Id + σ) ◦ φi(− sup
t∈[0,T )

−η3−i,0(x3−i(t))),

− (Id + σ−1)(−γi(‖d‖))}
≤ max{−(Id + σ) ◦ φi(−‖V3−i,0‖[0,T )),

− (Id + σ−1)(−γi(‖d‖))}. (55)

Combining (54) and (55),

‖Vi,0‖[0,T ) ≤ max{Vi,0(0),−α−1
i,1 (−‖Vi,1‖[0,T ))}

≤ max{Vi,0(0),−α−1
i,1 (−Vi,1(0)),−α−1

i,1 ◦ α
−1
i,2 (−‖Vi,2‖[0,T ))}

· · ·

≤ max{∆i,0,−φ̂i,1(−‖V3−i,0‖[0,T )), γ̂i,1(‖d‖)},

where

∆i,0 = max{Vi,0(0),−α−1
i,1 (−Vi,1(0)), . . . ,

− α−1
i,1 ◦ · · · ◦ α

−1
i,r−1(−Vi,r−1(0))}.

Hence,

‖V1,0‖[0,T ) ≤ max{∆1,0,−φ̂1,1(−∆2,0),−φ̂1,1 ◦ φ̂2,1(−‖V1,0‖),
− φ̂1,1(−γ̂2,1(‖d‖)), γ̂1,1(‖d‖)}

= max{∆1,0,−φ̂1,1(−∆2,0),
− φ̂1,1 ◦ φ̂2,1(−‖V1,0‖),−η∗1,0}

with η∗1,0 given in (23). With the small-gain condition (31),

‖V1,0‖[0,T ) ≤ max{∆1,0,−φ̂1,1(−∆2,0),−η∗1,0}. (56)

By the symmetry between V1,0 and V2,0,

‖V2,0‖[0,T ) ≤ max{∆2,0,−φ̂2,1(−∆1,0),−η∗2,0}. (57)

Because T is arbitrary on J(x0, d) and the right-hand sides of
(56) and (57) are independent of T , we have

‖Vi,0‖J(x0,d) ≤ max{∆i,0,−φ̂i,1(−∆3−i,0),−η∗i,0}, i = 1, 2.

Analogous to the derivation of (42), since Vi,0 is zero in the
set Si,0, positive in Rn\Si,0, and tends to +∞ as |x|Si,0 → +∞,
there exists a K∞ function αi,1 such that, for all t ∈ J(x0, d),

|x(t)|Si,0 ≤ max{α−1
i,1 (∆i,0),

α−1
i,1 (−φ̂i,1(−∆3−i,0)), α−1

i,1 (−η∗i,0)}, i = 1, 2.

Thus, the distance from x(t) to X = S1,0
⋂
S2,0 is finite.

Together with the assumption that the distance between x(t)
and Rn\X is bounded, the solution x(t) is well-defined for all
t ∈ I(x0, d) = J(x0, d).

B. Proof of (ii) of Theorem 2
Due to the existence of solutions on I(x0, d) = J(x0, d),

inft∈I(x0,d) ηi,k(t) is well-defined for i = 1, 2 and k = 1, . . . , r.
By applying Lemma 3 to (21), with taking η = ηi,k−1, α = αi,k,
and w = ηi,k, there exists an EKL function ρi,k satisfying
ρi,k(s, 0) = s such that

ηi,k−1(t) ≥ ρi,k(ηi,k−1(0) − α−1
i,k ( inf

t∈I(x0,d)
ηi,k(t)), t) + α−1

i,k ( inf
t∈I(x0,d)

ηi,k(t))

≥ min{ηi,k−1(0), α−1
i,k ( inf

t∈I(x0,d)
ηi,k(t))}

≥ min{η∗i,k−1, α
−1
i,k ( inf

t∈I(x0,d)
ηi,k(t))}, ∀x0 ∈ C, ∀t ∈ I(x0, d)

with η∗i,k−1 given in (23). Because η∗i,0 = α−1
i,1 ◦ · · · ◦α

−1
i,k (η∗i,k) for

each k = 1, . . . , r, we have

hi(t) = ηi,0(t)
≥ min{η∗i,0, α

−1
i,1 ( inf

t∈I(x0,d)
ηi,1(t))}

≥ min{η∗i,0, α
−1
1,1(η∗1,1), α−1

i,1 ◦ α
−1
i,2 ( inf

t∈I(x0,d)
ηi,2(t))}

= min{η∗i,0, α
−1
i,1 ◦ α

−1
i,2 ( inf

t∈I(x0,d)
ηi,2(t))}

· · ·

≥ min{η∗i,0, α
−1
i,1 ◦ · · · ◦ α

−1
i,r ( inf

t∈I(x0,d)
ηi,r(t))}

By combining this with (22) and (50),

hi(t) ≥ min{η∗i,0, φ̂i,1( inf
t∈I(x0,d)

h3−i(t)),−γ̂i,1(‖d‖)}

= min{η∗i,0, φ̂i,1( inf
t∈I(x0,d)

h3−i(t))}, ∀x0 ∈ C, ∀t ∈ I(x0, d).

Therefore,

inf
t∈I(x0,d)

h2(t) ≥ min{η∗2,0, φ̂2,1( inf
t∈I(x0,d)

h1(t))}

≥ min{η∗2,0, φ̂2,1(η∗1,0), φ̂2,1 ◦ φ̂1,1( inf
t∈I(x0,d)

h2(t))}.
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With the small-gain condition (31),

φ̂2,1(η∗1,0) = min{φ̂2,1 ◦ φ̂1,1(−γ̂2,1(‖d‖)), φ̂2,1(−γ̂1,1(‖d‖))}
≥ min{φ̂2,1(−γ1,1(‖d‖)),−γ̂2,1(‖d‖)}
= η∗2,0.

Therefore,

inf
t∈I(x0,d)

h2(t) ≥ min{η∗2,0, φ̂2,1 ◦ φ̂1,1( inf
t∈I(x0,d)

h2(t))}.

If inft∈I(x0,d) h2(t) ≥ 0, then

φ̂2,1 ◦ φ̂1,1( inf
t∈I(x0,d)

h2(t)) ≥ 0 ≥ η∗2,0,

and if inft∈I(x0,d) h2(t) ≤ 0, then, with the small-gain condition
(31),

φ̂2,1 ◦ φ̂1,1( inf
t∈I(x0,d)

h2(t)) ≥ inf
t∈I(x0,d)

h2(t) ≥ η∗2,0.

In summary,

inf
t∈I(x0,d)

h2(t) ≥ η∗2,0. (58)

Combining (22), (50) and (58),

inf
t∈I(x0,d)

η1,r(t)

≥ min{(Id + σ) ◦ φ1( inf
t∈I(x0,d)

h2(t)), (Id + σ−1)(−γ(‖d‖))}

≥ min{(Id + σ) ◦ φ1(η∗2,0), (Id + σ−1)(−γ(‖d‖))}
= min{(Id + σ) ◦ φ1 ◦ φ̂2,1(−γ̂1,1(‖d‖)),

(Id + σ) ◦ φ1(−γ̂2,1(‖d‖)), (Id + σ−1)(−γ1(‖d‖))}.

Because

(Id + σ) ◦ φ1 ◦ φ̂2,1(−γ̂1,1(‖d‖))
= (Id + σ) ◦ φ1 ◦ φ̂2,1 ◦ α

−1
1,1

◦ · · · ◦ α−1
1,r ◦ (Id + σ−1)(−γ1(‖d‖))

= (Id + σ) ◦ φ1 ◦ φ̂2,1 ◦ φ̂1,1

◦ φ−1
1 ◦ (Id + σ)−1 ◦ (Id + σ−1)(−γ1(‖d‖))

≥ (Id + σ−1)(−γ1(‖d‖)),

we have

η1,r(xi(t)) ≥ inf
t∈I(x0,d)

η1,r(t) ≥ η∗1,r = −|η∗1,r |, ∀t ∈ I(x0, d) (59)

where

η∗1,r = min{(Id + σ) ◦ φ1(−γ̂2,1(‖d‖)), (Id + σ−1)(−γ1(‖d‖))}.

Therefore, if we regard η∗1,r as an input, then h1(x1) is actually
a relative-degree-r ISSf-BF satisfying (21) and (59). According
to Theorem 1, the state x(t) does not leave the set

⋂r
k=1 C1,k−1

for all t ∈ I(x0, d) if x0 ∈ C. By symmetry, x(t) also stays in the
set

⋂r
k=1 C2,k−1 for all t ∈ I(x0, d). Thus, C =

⋂
i=1,2

⋂r
k=1 Ci,k−1

is robustly forward invariant. Now we take Xd = C1,0
⋂
C2,0.

Clearly, Xd is a larger set containing the set X in (20). Because
C is a subset of Xd, x(t) always stays inside Xd, and thus,
system (19) is ISSf on X.

C. Proof of (iii) of Theorem 2
From (i) of Theorem 2, J(x0, d) = R≥0 implies that system

(19) is forward complete.
We first show that the interconnected system (19) is uni-

formly stable with respect to the set C. Let

Ṽi,k−1(xi) = max{0,−ηi,k−1(xi) + η∗i,k−1} (60)

for i = 1, 2 and k = 1, . . . , r. Then, Ṽi,k−1(xi) = 0 if x ∈ Ci,k−1,
and Ṽi,k−1(xi) > 0 if x ∈ Rn\Ci,k−1. By combining (51), (56)
and (60),

‖Ṽ1,0‖ = max{0, sup
t≥0
−η1,0(t) + η∗1,0}

≤ max{0, ‖V1,0‖ + η∗1,0}

≤ max{0,∆1,0 + η∗1,0,−φ̂1,1(−∆2,0) + η∗1,0}

≤ max{0, µ1,1(Ṽ1,0(0)), . . . , µ1,r−1(Ṽ1,r−1(0)),
µ2,1(Ṽ2,0(0)), . . . , µ2,r−1(Ṽ2,r−1(0))} (61)

where

µ1,1(s) = s,
µ1,k(s) = −α−1

1,1 ◦ · · · ◦ α
−1
i,k−1(−s + η∗1,k−1) + η∗1,0

µ2,1(s) = −φ̂1,1(−s + η∗2,0) + η∗1,0,

µ2,k(s) = −φ̂1,1 ◦ α̂
−1
2,1 ◦ · · · ◦ α

−1
2,k−1(−s + η∗2,k−1) + η∗1,0

for k = 2, . . . , r. Clearly, µi,k(s) is strictly increasing and tends
to +∞ as s → +∞. Also, it is easy to see that µ1,1 is a K∞
function. For each k = 2, . . . , r, it follows from (23) that
µ1,k(0) = −α−1

1,1 ◦ · · · ◦α
−1
i,k−1(η∗i,k−1) + η∗1,0 = 0, and hence, µ1,k is

of class K∞. On the other hand, with the small-gain condition
(31),

µ2,1(0) = −φ̂1,1(η∗2,0) + η∗1,0,

= −min{φ̂1,1 ◦ φ̂2,1(−γ̂1,1(‖d‖)), φ̂1,1(−γ̂2,1(‖d‖))} + η∗1,0
≤ −min{−γ̂1,1(‖d‖), φ̂1,1(−γ̂2,1(‖d‖))} + η∗1,0
= 0.

Similarly, we also have µ2,k(0) ≤ 0 for k = 2, . . . , r. Therefore,
we can assume that µ2,1, . . . , µ2,r are K∞ function. Otherwise,
we can replace them by

µ̂2,k−1(s) = µ2,k(s) − µ2,k(0), k = 1, . . . , r.

Let

Ṽ(x) = max
i=1,2

max
k=1,...,r

Ṽi,k−1(xi) (62)

and

δ1,1(s) = max
i=1,2

max
k=1,...,r

µi,k(s).

Clearly, δ1,1 is of class K∞. By combining (61) and (62),

Ṽ1,0(x1(t)) ≤ ‖Ṽ1,0‖

≤ max{µ1,1(Ṽ(x0)), . . . , µ1,r−1(Ṽ(x0)),
µ2,1(Ṽ(x0)), . . . , µ2,r−1(Ṽ(x0))}

= δ1,1(Ṽ(x0)), ∀x0 ∈ R
n, ∀t ≥ 0.
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Similarly, we can construct δi,k ∈ K∞ for each i = 1, 2 and
k = 1, . . . , r such that

Ṽi,k−1(xi(t)) ≤ δi,k(Ṽ(x0)), ∀t ≥ 0.

Thus,

Ṽ(x(t)) ≤ δ(Ṽ(x0)), ∀t ≥ 0

with δ ∈ K∞ given by

δ(s) = max
i=1,2

max
k=1,...,r

δi,k(s).

Because Ṽ is zero inside C, positive outside C, and tends to
+∞ as |x|C → +∞, there are µ, µ̄ ∈ K∞ such that

µ(|x|C) ≤ Ṽ(x) ≤ µ̄(|x|C), (63)

and thus,

|x(t)|C ≤ µ−1 ◦ δ ◦ µ̄(|x0|C), ∀x0 ∈ R
n, ∀t ≥ 0,

which, together with (2), implies that the interconnected sys-
tem (19) is uniformly stable with respect to C.

The rest is to prove that the interconnected system (19) is
uniformly attractive with respect to C. Recalling (53), because
βi,k(s, t) tends to zero as t → +∞,

lim sup
t→+∞

Vi,k−1(xi(t)) ≤ −α−1
i,k (− sup

t≥0
Vi,k(xi(t)))

for i = 1, 2 and k = 1, . . . , r. According to [47, Lemma 10.4.4],

lim sup
t→+∞

Vi,k−1(xi(t)) ≤ −α−1
i,k (− lim sup

t→+∞

Vi,k(xi(t))). (64)

Similarly, from (55)

lim sup
t→+∞

Vi,r(xi(t)) ≤ max{−(Id + σ−1)(−γi(‖d‖)),

− (Id + σ) ◦ φi(− lim sup
t→+∞

V3−i,0(x3−i(t)))}. (65)

By combining (64) and (65),

lim sup
t→+∞

Vi,0(xi(t))

≤ lim sup
t→+∞

−α−1
i,1 ◦ · · · ◦ α

−1
i,r (−Vi,r(xi(t)))

≤ max
{
− φ̂i,1(− lim sup

t→+∞

V3−i,0(−x3−i(t))), γ̂i,1(‖d‖)
}
.

Therefore,

lim sup
t→+∞

V1,0(x1(t))

≤ max
{
− φ̂1,1 ◦ φ̂2,1(− lim sup

t→+∞

V1,0(x1,0(t))),−η∗1,0
}
,

≤ −η∗1,0,

where the final inequality follows from the small-gain condi-
tion (31). With a similar derivation,

lim sup
t→+∞

Vi,k−1(xi(t)) ≤ −η∗i,k−1, i = 1, 2, k = 1, . . . , r.

Therefore,

lim sup
t→+∞

Ṽi,k−1(xi(t))

= max{0, lim sup
t→+∞

−ηi,k−1(xi(t)) + η∗i,k−1}

≤ max{0, lim sup
t→+∞

Vi,k−1(xi(t)) + η∗i,k−1}

≤ 0,

and consequently,

lim sup
t→+∞

Ṽ(x(t)) = lim sup
t→+∞

max
i=1,2

max
k=1,...,r

Ṽi,k−1(xi(t)) ≤ 0.

Recalling (63), we have

0 ≤ lim sup
t→+∞

|x(t)|C ≤ µ−1(lim sup
t→+∞

Ṽ(x(t))) ≤ 0,

which implies that the interconnected system (19) is uniformly
attractive with respect to C.

In summary, the interconnected system (19) is UGAS with
respect to the set C.
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