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Abstracit— This letter investigates goal-reaching control
synthesis for neural network control systems. A backward
reachability framework is developed based on constrained
zonotopes, in which the graph set of a RelLU-activated
feedforward neural network is encoded as a finite union of
constrained zonotopes. Using this representation, under-
approximations of backward reachable sets are computed
for systems with nonlinear plant models, ensuring the fea-
sibility of the goal-reaching task. Control sequences are
then synthesized through an optimization procedure that
exploits the under-approximated set. A numerical example
demonstrates the effectiveness of the proposed approach.

Index Terms— Neural networks, control synthesis, back-
ward reachable set, constrained zonotope.

[. INTRODUCTION

ITH the increasing prevalence of neural networks

(NNs), many dynamical systems now incorporate an
NN either as a controller [1], [2] or as a model for complex
nonlinear effects [3], [4], giving rise to neural network control
systems (NNCSs). Control synthesis for NNCSs, such as
steering the system from a given initial state to a desired
target set known as goal-reaching, remains a challenging
problem. The nonlinearities of both the NN and the plant
dynamics make it difficult to provide formal guarantees on the
feasibility of control synthesis, which are crucial for safety-
critical applications. Existing approaches include embedding
NNs into a model predictive control (MPC) framework to
compute control inputs via optimization [4], [5], although
feasibility guarantees remain unresolved.

The backward reachable set (BRS) of a discrete-time control
system is the set of initial states from which the system can
be driven into a target region within a finite number of steps
under some control sequence. Backward reachability has been
studied using constrained zonotopes (CZs) [6], which support
efficient set operations and enable a linear program (LP)-
based formulation for safety verification [7], [8]; however,
these methods do not extend to NNCSs. On the other hand,
many techniques for BRS computation in NNCSs have been
proposed [9], [10], [11], [12], [13], though most of them focus
on safety verification with a fixed controller.
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In this work, we address the goal-reaching control synthesis
problem for NNCSs using backward reachability with CZs.
Our main contributions are threefold: (i) We present a CZ-
based algorithm that encodes the graph set of a ReLU-activated
feedforward neural network (FNN) as a finite union of CZs.
(i) We develop a CZ-based backward reachability framework
for ReL.U-activated NNCSs with nonlinear plant models; the
method computes both over- and under-approximations of
the BRSs, with the under-approximation providing feasibility
guarantees for goal-reaching from a given initial state. (iii)
Leveraging the under-approximated BRS, we synthesize fea-
sible control sequences that drive the NNCS into a target set
within a finite time. These innovations differ fundamentally
from our prior verification-oriented work (e.g., [11], [12], [13],
[14]) in both problem formulation and technical approach.

Notation. For a vector * € R™, x; denotes the i-th
component of x. For a matrix A € R"*™, A[i:j,r:s| denotes
the submatrix of A consisting of rows ¢ through j and columns
r through s; if ¢ or j (resp. r or s) is omitted, the range is
understood to extend from the first row (resp. column) to j
(resp. s), or from % (resp. r) to the last row (resp. column);
Al—i:,:] (resp. A[:, —i:]) denotes the submatrix formed by
the last 4 rows (resp. columns). Given two matrices A and B
with compatible dimensions, [A, B] and [A; B] denote their
horizontal and vertical concatenations, respectively. Given sets
X, ZCR  X@Z={x+z|xec X,zc Z}is the
Minkowski sum, and X © Z = {s € R" | s+ Z C X} is the
Minkowski difference. The affine transformation of X given
a matrix A and vector b is AX¥ +b={Axz+b|x € X}.
The identity matrix in R™*" is denoted as I,. The vectors
and matrices whose entries are all 0 (resp. 1) are denoted as
0 (resp. 1).

Il. PRELIMINARIES & PROBLEM STATEMENT

Definition 1: [6] A set Z C R" is a constrained zonotope
if there exists (G, c, A,b) € R"*"s x R™ x R"*"sx R"e
such that Z = {G€+c | &€ € By, A& = b} where By =
{x € R™ | ||z||cc < 1} is the unit hypercube in R"s.

Each column of G is called a generator of Z. The con-
strained generator representation of Z is Z = (G, ¢, A,b).
Denote B (A, b) = {€ € B | A = b}. A CZ without the
equality constraint A& = b reduces to a zonotope, defined as
Z = {G£ +c|€e B }, with the generator representation
Z = {(¢,G). CZs are closed under affine transformations,



Cartesian products, and generalized intersections. The empti-

ness of a CZ can be checked by solving an LP: fora CZ Z =

(G,e,A,b) CR", Z # () & min{||{]|« | AE = b} <1 [6].
The discrete-time NNCS considered in this work is:

xz(t+1) = f(x(t)) + Brm(x(t)) + Bu(t)
fa(z(t),u(t))

where (t) € R, u(t) € R™ are the state and the con-
trol input, respectively; f is a twice-differentiable nonlinear
function; 7 is an {-layer ReLU-activated FNN, which may
represent the model residual or nominal NN-based controller.
We assume x € X and uw € U, where X C R"” and Y C R™
are the state and input domains, respectively, which are both
represented as CZs.

For the FNN 7, its k-th layer weight matrix and bias
vector are denoted as W (=1 and v(*~1), respectively, where
k=1,...,¢ Denote (*) as the output of the neurons in the
k-th layer, and nj, as the dimension of z*) (i.e., the number
of neurons in the k-th layer). Then, for Kk =1,...,/ — 1, we
have %) = ¢p(2F)) = p(WFDg=1) 1 »(F=1) where
z(F) is referred to as the pre-activation of the neurons x(*),
x(®) = x(t), and ¢ is the vector-valued activation function
constructed by component-wise repetition of the ReL.U func-
tion, i.e., p(z®) £ [ReLU(z"); - ;ReLU(zY)]. In the
last layer, only the linear map is applied, i.e., w(x(t)) =
) = WE=Dg(=1) 4 41 The total number of hidden
neurons of 7 is denoted as Nz £ ng + -+ + ng_q.

Definition 2: Given a target set 7 C X, the K-step BRS
of the NNCS (T)), denoted as Px (T), is defined as Py (T) =
{z(0) € X | Fu(0), - ,u(K —1) e U : x(t) = falz(t —
D,u(t —1),z(t) € X,z(K) € T,t = 1,2,...,K}. For
simplicity, denote P(7) £ Py(T).

The following problem will be investigated.

Problem 1: Given a target set 7 C X represented as either
a single CZ or a finite union of CZs, an initial condition z(0),
and a time horizon K € Z-~.(, determine whether there exists a
feasible control sequence u(0),u(1),--- ,u(K —1) such that
x(K) € T; if so, compute such a control sequence.

The main challenge in Problem [I] arises from the non-
linearities in f and 7. To address this, we compute over-
and under-approximations of the BRSs for the NNCS (),
since computing the exact set Py (7 ) is generally intractable.
Specifically, we construct a K-step over-approximated BRS,
Pr(T), and a K-step under-approximated BRS, P (7).
These sets provide two key insights: i) if £(0) ¢ Px(T),
then no control sequence can render x(K) € T, ii) if
x(0) € Pr(T), then there exists a feasible control sequence
u(0),u(l),--- ,u(K — 1) € U such that x(K) € T. The
following sections detail the computation of these approxima-
tions and the feasible control sequence.

(D

[11. CONSTRUCTION OF FNN GRAPH SET VIA CZS

In this section, we describe how to construct the graph set
of the ReLLU-activated FNN 7 via CZs, which will be used
for backward reachability analysis in the next section.

The graph set of 7 over X is defined as G(w, X) =
{lz;xr] | Tn = w(x),z € X} C R*"™. It is shown in

Algorithm 1: FNN Graph Set Construction via CZs
Input: CZ domain &X', FNN 7, a large scalar «
Output: H.(X) = GetNNGraphSet(X, 7, ) as a finite
union of CZs
1 21+ X, Hp(X) < 0, ng < n;
2fork=1,2,....,—1 do
3 {AP:, AP;, -+ , AP{*} + Find AP Candidates;

4 r < 0;

5 for j € {1,2,--- ,s;} do

6 <Gk,Ck,Ak,bk><—fHReLU(OL,A'P£); // use (2
7 for Zkﬂ' = <Gi,Ci,Ai, b1> n Zk do

8 G, + Gi[l:ng,:];eq + cgll i ng, ] ;

9 Gy +— Gi[—ng—1:,:];¢p < ¢i[—np—1:,:];

10 A — [diag(As, Ag); [-WEDGY, G
1 baug — [bi; b; WE Ve, +vt=1) —¢,];

12 7'laug — <dla‘g(Gl7 Gk)7 [Ci; Ck]; Aauga baug>;
13 Hi Ig 0 0 ISJ Haug:

14 if H;, # 0 then

15 L T+ 1 Zpgr e — Has

16 | Zppr < Uin 2t

17 for Z,; € Z, do

18 L’HW(X)%Hw(?\,’)U(diag(In,W(ffl))ZMJr [0;0(¢-1))
19 return H,(X)

[11, Theorem 1] that G(ar, X’) can be represented exactly by
a single hybrid zonotope; however, this representation is often
highly redundant as many binary assignments fail to satisfy the
associated equality constraints. To mitigate this redundancy,
we represent G(7, X') as a finite union of CZs.

Given an input to 7, the activation pattern of 7 is an as-
signment of a binary value to each neuron, indicating whether
it is active (1) or inactive (0) [15]. Specifically, the activation
pattern of 7r is defined as AP 2 [AP; APo;--- ; AP, 1] €
{0,1}M= where APy, £ [APr1; APr2;- ; APkn,] €
{0,1}"; here, APy ; = 1 if zj(k) > 0 and APr; = 0

otherwise, where zj(»k) is the pre-activation of the j-th neuron
in the k-th layer. For a given AP and a constant a > 0,
the graph set of the vector-valued ReLU function for the k-th
layer, denoted as Hgeru(c, AP} ), represents the relationship

between z(*) and *) = ¢(2(®) in the [2(F); 2(F)] space:

Hreru (o, APy) = P - (X?LHReLU(Oé,APk,j)) 2

where  HgerLu(a, 1) = ([ae/2; /2], [)2; /2], 0, (),
Hrerv(a,0) = {[a/2;0],[—«/2;0],0,0), and P is a
permutation matrix satisfying [z1;- - ;2n, ;215 3T, =

Plzy;21;+ -+ ;2n,;Tn,]. Note that the graph of a scalar
ReLU function over [—a, ] is Hreru(@, 1) U Hreru(e,0)
in the [z; x] plane. Since affine transformations and Cartesian
products of CZs are closed, Hreru (e, APy) in @) is also a
CZ, denoted as Hreru (o, APk) = (Gk, ¢k, Ak, b).
Algorithm [1| constructs the graph set G(, X) using CZs.
The procedure begins by finding all candidate activation pat-
terns for the k-th layer over the input space X (Line [3). This
can be achieved either by exhaustively enumerating all 2™*



possible activation patterns, or by using NN verifiers [16] or
Algorithm 2 in [14] to over-approximate the neuron ranges
and eliminate activation patterns that violate these bounds
from the initial set of 2"* candidates. For each candidate
AP, we compute Hger,u (e, APJ,) and propagate the layer
transformation from [(?); 2(*=1)] to the [2(?); 2(*)] space for
each non-empty CZ Zj ;. This is done by combining Z ;
and Hgeru(a, APj) with affine equality constraints (Lines
. The resulting CZ is then projected onto [x(?); 22(F)]
to yield Hy. If Hj is non-empty, indicating the activation
pattern is feasible, it is stored and passed to the next layer
(Lines [T4}{16). The final affine transformation is applied at the
last layer to obtain the final graph set (Lines [I7HI8). Because
the number of activation patterns is finite, this algorithm is
guaranteed to terminate. Note that o can be arbitrarily chosen
as long as zj(.k) € [—a, a], thereby preserving the exact graph
set representation.

The following theorem formally proves that H,(X) re-
turned by Algorithm [I]is exactly G(m, X).

Theorem 1: The output of Algorithm H(X), is a finite
union of CZs that exactly represent the graph set of 7 over
the state domain X, i.e. Hy(X) = G(m, X).

Proof: We only provide a proof sketch due to the
space limit. Define Hop = {[z©@;2®] | 2@ ¢
X, [z(j);w(j)] c HReLU(a,APj),Z(j) = WU-Dgl-1 ¢
w0~ =1,2,--- k}. It is easy to show Hy = Ho x holds
for all k € {1,2,...,¢ — 1} by induction where Hj, is com-
puted by Line [I3] From Line [3|and Lines [[4}{I5] all infeasible
activation patterns over X are eliminated. Thus, from Lines
Zp = Uj_, Zy ; exactly represents the relationship between
the input  and 2/~ for all feasible activation patterns. For
the last layer, only the affine transformation in Lines [I7H18] is
applied, which yields Hr(X) = G(m, X). [ |

Theorem [I| shows that G(r, X) can be represented as a
finite union of CZs, where each individual CZ corresponds
to a feasible activation pattern of w over X. Therefore, the
number of CZs in G(m,X), denoted as n,, is equal to the
total number of feasible activation patterns of 7 over A

The graph set H,(X) returned by Algorithm [1| possesses
useful properties for computing the BRS over-approximation.

Proposition 1: Consider a CZ-represented state domain
X = (Gg,c, Ay, b,y where G, € R" ™9z and A, €
R7ea*noe . Let Ho(X) = UL B, = U (G, iy Ay
br,) be the output of Algorithm [1] For any 7 € {1,--- ,n,},
the following properties hold: (i) Ax,[1 : ne,,:] = [A4,0],
br[l:ne,,:|=bs, Gr,[1:n,:]=[G4,0], and cx,[1:n,:]=
cg; (i) ker(Gy)Nker(A;) C ker(Gax,[:,1: ng,]) Nker(Ay,[:
,1:ng,]) where ker denotes the matrix kernel.

Proof: We provide a proof sketch due to the space limit.
From the construction of H;, (Lines in Algorithm [T} it is
easy to check property (i). For (ii), let g € ker(G,)Nker(A,),
then G,q = 0 and A,q = 0. From Line [12] and Line [T3] it
is easy to verify that G,[:,1: ng,| = [G5;0]. From Line
and Line it is easy to obtain that A [;,1:n,] =
[A,; —W () G,;0]. Hence, G,[;,1:7n,,]qg = 0 and A, |:
,1:ng4, ]g = 0, which proves property (ii). [ |

IV. GOAL-REACHING CONTROL SYNTHESIS USING
BACKWARD REACHABILITY

A. BRS Over-Approximation

In this subsection, we compute Pk (T), the K-step over-
approximated BRS, for the NNCS ().

Similar to [12], we define the graph set of f over X as
Gr(X)E2{[z;y] | y = f(x),z € X}. We can use function
approximation techniques, such as Special Ordered Set [17]
or OVERT [18], to construct a finite union of CZs, denoted
as Hy(X), such that Gp(X) C Hp(X) £ UL Hy,

Assumption 1: For all j € {1,2,--- ,ns}, Hy, £ (Gy,,
cy;, Ay, by,) satisfies Ay [1:n,,,:] = [A;,0], by, [1:nc,,:
] =b. ., Gy, [l:n,:] = [G,,0], and cy,[1 : n,:] = c,.

Remark 1: Assumption [1] is readily satisfied when Hy,
is constructed in graph-set form using the CZ generalized
intersection operation. For instance, consider a CZ H f; £
(G fj,éfj,A fj,lA)fj> constructed by geometrically bounding
the graph of f(x) for any * € X D X. In this case,
the graph-set over-approximation Hy, can be computed as
H #; Nir,.,0) X. Applying [6, Proposition 1], we Ahave Ay, =
[[Af7 ) 0]; [07 Am]7 [ij [1 : Anv :]a _Gz]]9 bfj = [bf]‘ ; bz; Cy —

éfj[l : m:]], Gf]. = [G&.,OA], cy; = éfj. Let €fj =
[£7,:62]. Then we have Ap &y = by, Ay = by,
and Gy, [1 : n,:]&y, —héfj[l i, = Gp€y + ¢y By
reordering &7, = [£4:€ fl} we equivalently obtain Ay, =
14,0110 Ay, [:[-G,. Gy [1:m ]l by, = [baibyic -
¢r;[1:n,:]], Gy, = [[G4,0];]0,Gy,[—n :,:]]], and ¢y, =

[cz; €¢;[—n:,]], implying Assumption [1| holds.

The next theorem presents a constructive method for com-
puting the one-step BRS over-approximation of the NNCS (T,
represented as a finite union of CZs. Recall that ny, and n,
denote the numbers of generators and equality constraints in
X, respectively.

Theorem 2: Given X = (G, c;, Ay, by), let He(X) =
Ul Ho, = U (Geyy Creyy Ay, bre,) be the output of Al-
gorithm and Hy(X) = U;Zl’}-[fj = U;Zl<ij,cfj,
Ay, ,by,) be an over-approximation of the graph set Gz (X),
ie, Gf(X) C Hy(X). Assume Assumption [I] holds. For
a CZ-represented target set, 7 C R", define (G,,c,, A,,
b.) = T ® (—BU). Then, the one-step BRS of (1)) is over-
approximated by a union of CZs given as:

ﬁ(T): U ﬁpi,j £ U <épi,_7’Epi,j7zpi‘j35pi,j>
1<i<n, 1<i<n,
1<j<ny 1<j<ny
where G,,, = [G,;,0,0,0], ¢,, = ¢ by, =
[b""i;bfj [ncz: +1, :];bT;chcfj[fn:v :]7BTFC‘I|‘7: [7m:7:H’ and
Dij [[A"ri[:’1:ngz]7A7"i[:’n9w+1 :],0,0}; [Afj [, +1:
,1ing,],0, Ay [ne,+1 :,ny,+1:],0];[0,0,0, A;]; [Gg,[—n :
1 ing |+ BrGr[—m 1,1 :ng, ], B:Gr [-m :,ng, +1 :
Gy [-n:ng, +1:], —G-]].
Proof: For any * € P(T) C X, there exist i €
{1,---,n.} and j € {1,---,ns} such that [z;7w(x)] €
S

BN

Hr, and [z; f(x)] € Hy,. Hence, there exists &,
Boo(Ax,,br,) and £, € Boo(Ay,, by, ) such that [x; ()]
Grbr, + Cr, and [x; f(x)] = Gy,&5, + cy,. From As-
sumption [I and (i) in Proposition [1} we have Ag [1 : n.,,:



] = Ax [l : ne,,:] = [A;,0] and Gy,[1 : n,:] = Gg,[1 :
n,:] = [G4,0]. Therefore, partitioning &, and £z, into
En, = [671-1»,1;571'7:,2] and £fj = [6,fj,1;€,fj,2:| with &7,,1 € R"se
and ¢, 1 € R"= respectively yields * = Gyéx, 1 + ¢ =
G.&f,1 +c, and A&, 1 = A€ 1 = by. Therefore,
&€ri1 = &f,1 + q where g € ker(G,) N ker(A;). Since
ker(G;)Nker(A,) C ker(Gr,[:,1:ng,])Nker(Ayr,[:, 1:ng,])
from Proposition (I, we have Ar[:;,1 : nglg = 0 and
Gr[:,1:ng4.]g=0.

Since &x, € Boo(Anr,,bx,) and &5, € Bo(Ay,,by,),
it gives that Ar &r, = Ax[§f,1:8m 2] + Ax[:1

ngx}q = Aﬂ'i [g.ijl;éﬂi;Q] = bﬂ'z‘ and A.fjs.fj =
[[Am,O]Efj;Afj[ncw +1 31 ngw]gfwl,Afj[ncm +1 :
g, + 1 &5 2] = [be;by;[ne, + 1 ::]]. In addition, by

Definition 2} P(T) = {x € X | 3u € U : fa(z,u) €
T ={x € X | f(x) + Brmw(x) € T & —BU}. Since
x € P(T), there exists &, € By (A;,b;) such that f(x) +
Brm(x) = Gz [-n :,:|€, +cg[-n,:] + Br(Gr,[-m 3,
]£7T1‘, + Cr; [7m7 ]) = G‘ré‘r +cr. Since é‘m,l = £f7,1 +q and
Gr,[:,1 : ng,]g = 0, simplifying the equation above yields
Gy [-n::)8s,+BrGr[=m 10y, [€5, 1+ BrGr [—m:
Mg, +1,:8n, 20— Gr& = cr—cp,[—n )| = Brecg [-m 1]
Let &, ; = [£7;,1; &m.,2: €7,,2; &), combining all the equality
constraints above yields that &, . € Buo(Ap,,,bp, ;). In
addition, ¢ = G,&5, 1+¢, = Gy, ,&p, ,+Cp, ;, Which implies
x € Hy, ;. Hence, P(T) C P(T). |

Based on Theorem [2] the K-step over-approximated BRS
of NNCS (I) can be computed recursively as follows:

Po(T)=T, P«T)=PPia(T)), t=1,....,K. (3)

The set P;(7) in (3) is, by construction, a finite union of
CZs. Since G(m,X) is defined over the entire state domain
X, which is typically larger than the BRS, some CZ subsets
in P;(7T) may be empty. These empty subsets are identified
via LPs and removed before propagation to the next time step
to reduce computational overhead.

For the special case where f(x) in (I) is linear, the exact
BRS of () can be obtained by the following corollary, whose
proof follows directly as an extension of Theorem 2.

Corollary 1: Consider the NNCS (1) with f(x) = Aw.
Given X = (G, c., As,by), let Hy(X) = Ul Hy, =
U (Gr,y Cryy A,y br,) be the output of Algorithm [1} For a
CZ-represented target set, T C R", define (G, ¢,, A, b;) =
T @ (—BU). Then, the exact one-step BRS of (I) is given by
a union of CZs: P(T) = U=, H,, where H,,, = (G, cp,,
Ay bp,), Gy, = [Gri[1:1,1],0], ¢, = cx,[1 10,2, Ay, =
[diag(Aﬂ'wAT); [DGﬂ'm _GTH’ bm = [bﬂ"i; bT; Cr — Dcﬂ'i]’
and D = [A, B,].

B. BRS Under-Approximation

In this subsection, we compute P (7) for the NNCS (I)
by utilizing the sequential linearization technique.

For a given linearization point x*, the function f is lin-
earized so that the NNCS (I is locally approximated as:

a(t+1) = f(2(t),u(t) + f(z*) - A" + Ly 4

where f(x(t),u(t)) £ Ax(t) + Bom(x(t)) + Bu(t) with
A, = 83;:3) weme- The term L; € R™ in (@) represents
the Lagrange remainder error, where the i-th component is
given by L, = L(z(t) — )T 24 (&) (x(t) — =*), with
& € {uz* + (L —X)x() | A; € [0,1]}. Within a convex
input domain Xz, C R", the linearization error L; can be
over-approximated by a zonotope £(Xr,) = (0, |L,|) where
|f}t| € R%} can be obtained by interval analysis [19]. Then,

over domain Xr,,, (t + 1) can be enclosed as follows:
a(t+1) € f(@(t),ult) + f(&) — A” + L(XL,).

The following theorem computes an under-approximation of
the one-step BRS for the NNCS (). The key idea is to enclose
the linearization error £(Xr,) within a zonotope, enabling the
computation of P(7) as the BRS of the model z(t + 1) =
F(x(t), u(t)) with respect to a suitably shrunken target set.

Theorem 3: Given a CZ-represented X C R", let
Ha(X) = U5 Hoe, £ U7 (G, s €y A, b, ) be output of
Algorithm Given a CZ-represented target set 7 = (G, c-,
A, b;) C R", alinearization point *, and a zonotopic bound
of the linearization error £(XL,) over a prior set Xz, O P(7),
a one-step under-approximated BRS of (1)) for 7 is given
as P(T) £ {x € XL, | u e U : f(z,u) € T} where
TET o (L) + (F@") — Aw)).

Proof: From Def. 2] P(T) = {x € X | Ju € U :
f(x) + Brm(x) + Bu € T} = {x € AL, | Ju € U :
fle,u)+ L+ f(x*) - Awe* € T} 2{z € X, [Jucld:
VL; € L(XL,), f(z,u) + f(z*) - Ayx* + L, € T} = {x €
Xp, | ueld: flxg,u)e ToT}=P(T). [

Remark 2: The conservatism of this under-approximation
depends on the tightness of the error bound £(X,), which is
determined by the choice of the linearization point £* and the
prior set Xz, 2 P(T). To reduce conservatism of L(XL,),
x* should be chosen near the geometric center of the true
BRS P(T), and X, should approximate P(7) as tightly as
possible. In practice, we use the BRS over-approximation from
Section setting Xz, = OP(T) as the prior set and
its center as the linearization point, where [J is the interval
hull operator. Moreover, increasing the number of CZs used
to bound the nonlinearity f can reduce the conservatism of the
BRS over-approximation, thereby tightening the error bound
L(XL,), although this comes at the expense of increased
computational complexity.

The multi-step under-approximated BRS computation for
the NNCS (I) is outlined in Algorithm [2] The procedure
starts by constructing the NN graph set . (X') over the state
domain X via Algorithm [I] (Line [I). For each CZ subset
Ti,; of the target set 7, the function Pregye,() computes an
over-approximated BRS P(7; ;) of the NNCS (I) based on
Theorem 2] (Line [5). A prior set Xz, is then obtained as
the interval hull of P(7;;), and its geometric center x* is
computed via center() (Line @) The one-step BRS of 7y ;,
P(T:,:). is computed using Theorem [3| and Corollary [I| (Line
. Subsequently, P, . (7") is computed as the union of P(7; ;)
fori € {1,2,...,r:} (Line , expressed as a finite union of
CZ subsets for the next iteration (Line [9).

Remark 3: In practice, the number of CZ subsets in P, (7))
may grow rapidly with ¢. This can be mitigated using a sam-




Algorithm 2: Multi-step Under-approximated BRSs

Input: domain X as a CZ, control bound U/ as a CZ,
target set 7 = U2, 7o ; as a finite union of CZs,
FNN 7, a large scalar «, time step K
Output: under-approximated BRSs P, (7), - - -
1 Hr(X) < GetNNGraphSet(X, 7, «)

2fort=0,1,..., K —1do
BH_l(T)F@;
fori e {1,---,r} do

ﬁ(ﬁ,z) — Ereover(ﬁ,ia .fC17 H?r (X)a u)

X, < O(P(Ti:)); «* = center(Xg,);

compute P(7;;) using Theorem |3| & Corollary
Pf—',—l(T) =Py 1 (T)UP(Ti,i)s

o | Ui T e Py (T);

return Bl (T), - ,Pg(T)

[--IEEN - Y

-
>

pling strategy, such as the farthest-point sampling algorithm
[20] applied to the geometric centers of the CZ interval hulls
to ensure uniform coverage.

C. Goal-Reaching Control Synthesis

We now address the control synthesis part of Problem [I]

From Algorithm [2] the ¢-step under-approximated BRS is a
finite union of CZs, P,(7T) = U;%,T¢,:, where each 7 ; is a
CZ. If (0) € Py (T), then there exists ig € {1,2,...,rx}
such that (0) € Tk ;,- By the construction in Algorithm
a control sequence u(0),u(1),--- ,u(K — 1) that drives the
NNCS to (K) € T is guaranteed to exist.

For any CZ subset 7;; € P,(T), where t € {1,2,..., K}
and i € {1,2,...,r:}, we define its parent as the CZ subset
Ti—1,; € P,_1(T) such that 7;; € P(T;—1,;), as described in
Lines of Algorithm [2] The parent of a CZ is denoted by
Pa(), e.g., Pa(T:,;) = Ti—1,;. Using this notation, we define
sets Ro,R1,..., Rk for the initial condition z(0) € Tk,
iteratively as follows (see Fig. [I] for an illustration):

Ro = Tk.,iy, Rt

Note that Ry depends on the choice of ig € {1,2,...,rk},
so the sets Ry, ..., Rk vary with 4y. For instance, in Fig. [T}
io € {2,3} if (0) € T2,2 N T2,3. The control admissible set
for any x € R; associated with i is defined as

=Pa(Ry_1), t=1,2,--- K. (5

U (z) £ {u et | fa(m,u) € Ripa}. (6)

It is clear that U/°(x) # () whenever Algorithm [2| returns
non-empty BRSs P, (7),--- ,Py(T), which guarantees the
feasibility of the goal-reaching task. For an initial state (0) €
Ro, we can select any u(t) € U/ (x(t)) such that z(t + 1) €
Rip1 fort =0,1,..., K — 1. Since T = R, it follows that
x(K) € T, the target set.

The minimum-norm control sequence {w(t)}!;" can be
synthesized iteratively by solving the following convex opti-
mization problem at each time step ¢ where 0 <t < K — 1:

. 2
Join, [lu(®)] ()
s.t. f(x(t)) + Bym(x(t)) + Bu(t) € Ritq.

@

~—

t

Py(T) = U?:sz‘i Py(T) = Ulg:lle
Fig. 1. Given an initial state ©(0) € 72,2\ 72,3 (red star) and a target
set T (yellow region), Algorithm[2yields PP, (77) and P, (7") with 3 and
6 CZ subsets, respectively. Since ig = 2, the sets are Ro = 72,2,
R1 = Ti,1,and Rz = T from ().
Since R;41 is a CZ, the constraint above is linear, making
a convex program that can be solved efficiently. Alternatively,
the control sequence {u(t)}/;" can be synthesized by solving
a single optimization problem at ¢t = 0:

min [t ®)
{fu® S =S, X_:
1<ip<rg
st x(t+1) = f(x(t)) + Brm(x(t)) + Bu(t),

u(t) € U (z(t)), K—1.

Although may be computationally demanding, it becomes
convex when f(x) is linear. Note that 7 (x(t)) can be ex-
pressed as an affine function of x, since each CZ subset R;
corresponds to a fixed activation pattern.

t=0,...,

V. SIMULATION RESULTS

We present an academic Dubins car example to demonstrate
the effectiveness of the proposed methods. The example is
implemented in MATLAB R2022a and run on a desktop
equipped with an Intel Core 19-12900K CPU and 32 GB of
RAM. The code is available at https://github.com/
wisc—arclab/goal-reaching-control-of-nncs.

Consider the discrete-time Dubins car model:

Palt +1) = pu(t) + 0.1 cos(6(1)).
py(t+1) = py(t) + 0.1sin(6(1)),
Ot +1)=0(t) + 0.1 (x(t)) + 0.1u(t),
where © = [p.,p,,0] " denotes the state vector consisting

of the horizontal coordinate, vertical coordinate, and heading
angle. The nominal controller 7 is a ReLU-activated FNN
with hidden layers of size [5,5], trained to approximate a
nonlinear MPC controller, and w« is the corrective control
input to be synthesized. We choose the state domain as

X = [-2,2] x [-2,2] x [-m, 7], the input domain as
U = [-0.5,0.5], and the target set as 7 = [0.95,1.05] x
[0.95,1.05] x [7/4 — 0.1,7/4 4+ 0.1]. We use the functional

decomposition technique in [21] to construct H¢(X), which
ensures Assumption [Iholds. For K = 3, we compute the over-
approximated BRSs P1(7),P2(T),P3(T) via Theorem '
and the under-approximated BRSs P, (7)), P5(T ), P5(T) via
Algorithm [2| With the cost L = thzo |u(t)|?, we synthesize
the control sequence u(0),u(1),u(2) by solving (B). The
left plot in Fig. 2| shows the sets P1(T),P2(T),Ps(T) and
P (T),Po(T), P3(T). Initial states are sampled from P5(7),


https://github.com/wisc-arclab/goal-reaching-control-of-nncs
https://github.com/wisc-arclab/goal-reaching-control-of-nncs
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Fig. 2.

(left) The p=-py plane projection of the target set 7, over-approximated BRSs P1(T), P2(T), Ps(T), under-approximated BRSs

P (T),Po(T),P5(T), and state trajectories with initial condition sampled from P5(7"). (middle) Under-approximated BRSs and state
trajectories with and without the control sequence w(t) synthesized by (8) in 3D space. The state trajectory with w(t) = O fails to reach the
target set 7-, whereas the trajectory with w(t) synthesized from (8)) successfully reaches 7. (right) Projection onto the pz-p,, plane showing under-
approximated BRSs P, (T), ..., P10(T), parent CZs Ro, . . . , R10, and the state trajectory with u(¢) synthesized from (8).

and the corresponding state trajectories under the synthesized
control sequence are simulated. All trajectories reach the target
set 7, thereby validating the correctness of the goal-reaching
control sequence.

For the initial state z(0) = [-0.95,1.1,—0.5]T and
time horizon K = 10, Algorithm produces the sets
P(T),...,P1o(T), with 3 CZ subsets of P;,(7") containing
x(0). The control sequence is synthesized by solving (8) with
L = Y)_, [u(t)]>. The middle plot in Fig. [2| illustrates the
under-approximated BRSs and the state trajectories with and
without the controller synthesized by (8) in 3D space. It is
evident that the state trajectory with u(t) = 0 fails to reach the
target set 7 since x(10) ¢ T, whereas the trajectory with w(¢)
synthesized from (8] reaches the target set 7 since z(10) € 7.
The right plot in Fig. 2 shows the under-approximated BRSs,
parent CZs, and the state trajectory with u(¢) from (8), all
projected onto the (pg,p,) plane.

VI. CONCLUSION

We proposed a CZ-based backward reachability analysis
framework to address the goal-reaching control synthesis
problem for NNCSs. The method constructs both over- and
under-approximations of the BRS, enabling the synthesis of
control sequences with formal feasibility guarantees. Simu-
lation results demonstrated that the synthesized controls suc-
cessfully drive the system to the target set, which validates the
effectiveness of the proposed approach.
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