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Abstract— This letter investigates goal-reaching control
synthesis for neural network control systems. A backward
reachability framework is developed based on constrained
zonotopes, in which the graph set of a ReLU-activated
feedforward neural network is encoded as a finite union of
constrained zonotopes. Using this representation, under-
approximations of backward reachable sets are computed
for systems with nonlinear plant models, ensuring the fea-
sibility of the goal-reaching task. Control sequences are
then synthesized through an optimization procedure that
exploits the under-approximated set. A numerical example
demonstrates the effectiveness of the proposed approach.

Index Terms— Neural networks, control synthesis, back-
ward reachable set, constrained zonotope.

I. INTRODUCTION

W ITH the increasing prevalence of neural networks
(NNs), many dynamical systems now incorporate an

NN either as a controller [1], [2] or as a model for complex
nonlinear effects [3], [4], giving rise to neural network control
systems (NNCSs). Control synthesis for NNCSs, such as
steering the system from a given initial state to a desired
target set known as goal-reaching, remains a challenging
problem. The nonlinearities of both the NN and the plant
dynamics make it difficult to provide formal guarantees on the
feasibility of control synthesis, which are crucial for safety-
critical applications. Existing approaches include embedding
NNs into a model predictive control (MPC) framework to
compute control inputs via optimization [4], [5], although
feasibility guarantees remain unresolved.

The backward reachable set (BRS) of a discrete-time control
system is the set of initial states from which the system can
be driven into a target region within a finite number of steps
under some control sequence. Backward reachability has been
studied using constrained zonotopes (CZs) [6], which support
efficient set operations and enable a linear program (LP)-
based formulation for safety verification [7], [8]; however,
these methods do not extend to NNCSs. On the other hand,
many techniques for BRS computation in NNCSs have been
proposed [9], [10], [11], [12], [13], though most of them focus
on safety verification with a fixed controller.
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In this work, we address the goal-reaching control synthesis
problem for NNCSs using backward reachability with CZs.
Our main contributions are threefold: (i) We present a CZ-
based algorithm that encodes the graph set of a ReLU-activated
feedforward neural network (FNN) as a finite union of CZs.
(ii) We develop a CZ-based backward reachability framework
for ReLU-activated NNCSs with nonlinear plant models; the
method computes both over- and under-approximations of
the BRSs, with the under-approximation providing feasibility
guarantees for goal-reaching from a given initial state. (iii)
Leveraging the under-approximated BRS, we synthesize fea-
sible control sequences that drive the NNCS into a target set
within a finite time. These innovations differ fundamentally
from our prior verification-oriented work (e.g., [11], [12], [13],
[14]) in both problem formulation and technical approach.

Notation. For a vector x ∈ Rn, xi denotes the i-th
component of x. For a matrix A ∈ Rn×m, A[i :j, r :s] denotes
the submatrix of A consisting of rows i through j and columns
r through s; if i or j (resp. r or s) is omitted, the range is
understood to extend from the first row (resp. column) to j
(resp. s), or from i (resp. r) to the last row (resp. column);
A[−i :, :] (resp. A[:,−i :]) denotes the submatrix formed by
the last i rows (resp. columns). Given two matrices A and B
with compatible dimensions, [A,B] and [A;B] denote their
horizontal and vertical concatenations, respectively. Given sets
X ,Z ⊂ Rn, X ⊕ Z = {x + z | x ∈ X , z ∈ Z} is the
Minkowski sum, and X ⊖Z = {s ∈ Rn | s+Z ⊆ X} is the
Minkowski difference. The affine transformation of X given
a matrix A and vector b is AX + b = {Ax + b | x ∈ X}.
The identity matrix in Rn×n is denoted as In. The vectors
and matrices whose entries are all 0 (resp. 1) are denoted as
0 (resp. 1).

II. PRELIMINARIES & PROBLEM STATEMENT

Definition 1: [6] A set Z ⊂ Rn is a constrained zonotope
if there exists ⟨G, c,A, b⟩ ∈ Rn×ng × Rn × Rnc×ng× Rnc

such that Z =
{
Gξ + c | ξ ∈ Bng

∞ ,Aξ = b
}

where Bng
∞ =

{x ∈ Rng | ∥x∥∞ ≤ 1} is the unit hypercube in Rng .
Each column of G is called a generator of Z . The con-

strained generator representation of Z is Z = ⟨G, c,A, b⟩.
Denote B∞(A, b) = {ξ ∈ B∞ | Aξ = b}. A CZ without the
equality constraint Aξ = b reduces to a zonotope, defined as
Z =

{
Gξ + c | ξ ∈ Bng

∞
}

, with the generator representation
Z = ⟨c,G⟩. CZs are closed under affine transformations,



Cartesian products, and generalized intersections. The empti-
ness of a CZ can be checked by solving an LP: for a CZ Z =
⟨G, c,A, b⟩ ⊂ Rn, Z ̸= ∅ ⇔ min{∥ξ∥∞ | Aξ = b} ≤ 1 [6].

The discrete-time NNCS considered in this work is:

x(t+ 1) = f(x(t)) +Bππ(x(t)) +Bu(t)︸ ︷︷ ︸
fcl(x(t),u(t))

(1)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and the con-
trol input, respectively; f is a twice-differentiable nonlinear
function; π is an ℓ-layer ReLU-activated FNN, which may
represent the model residual or nominal NN-based controller.
We assume x ∈ X and u ∈ U , where X ⊂ Rn and U ⊂ Rm

are the state and input domains, respectively, which are both
represented as CZs.

For the FNN π, its k-th layer weight matrix and bias
vector are denoted as W (k−1) and v(k−1), respectively, where
k = 1, . . . , ℓ. Denote x(k) as the output of the neurons in the
k-th layer, and nk as the dimension of x(k) (i.e., the number
of neurons in the k-th layer). Then, for k = 1, . . . , ℓ− 1, we
have x(k) = ϕ(z(k)) = ϕ(W (k−1)x(k−1) + v(k−1)), where
z(k) is referred to as the pre-activation of the neurons x(k),
x(0) = x(t), and ϕ is the vector-valued activation function
constructed by component-wise repetition of the ReLU func-
tion, i.e., ϕ(z(k)) ≜ [ReLU(z

(k)
1 ); · · · ; ReLU(z

(k)
nk )]. In the

last layer, only the linear map is applied, i.e., π(x(t)) =
x(ℓ) = W (ℓ−1)x(ℓ−1) + v(ℓ−1). The total number of hidden
neurons of π is denoted as Nπ ≜ n1 + · · ·+ nℓ−1.

Definition 2: Given a target set T ⊂ X , the K-step BRS
of the NNCS (1), denoted as PK(T ), is defined as PK(T ) ≜
{x(0) ∈ X | ∃u(0), · · · ,u(K − 1) ∈ U : x(t) = fcl(x(t −
1),u(t − 1)),x(t) ∈ X ,x(K) ∈ T , t = 1, 2, . . . ,K}. For
simplicity, denote P(T ) ≜ P1(T ).

The following problem will be investigated.
Problem 1: Given a target set T ⊂ X represented as either

a single CZ or a finite union of CZs, an initial condition x(0),
and a time horizon K ∈ Z>0, determine whether there exists a
feasible control sequence u(0),u(1), · · · ,u(K−1) such that
x(K) ∈ T ; if so, compute such a control sequence.

The main challenge in Problem 1 arises from the non-
linearities in f and π. To address this, we compute over-
and under-approximations of the BRSs for the NNCS (1),
since computing the exact set PK(T ) is generally intractable.
Specifically, we construct a K-step over-approximated BRS,
PK(T ), and a K-step under-approximated BRS, PK(T ).
These sets provide two key insights: i) if x(0) /∈ PK(T ),
then no control sequence can render x(K) ∈ T ; ii) if
x(0) ∈ PK(T ), then there exists a feasible control sequence
u(0),u(1), · · · ,u(K − 1) ∈ U such that x(K) ∈ T . The
following sections detail the computation of these approxima-
tions and the feasible control sequence.

III. CONSTRUCTION OF FNN GRAPH SET VIA CZS

In this section, we describe how to construct the graph set
of the ReLU-activated FNN π via CZs, which will be used
for backward reachability analysis in the next section.

The graph set of π over X is defined as G(π,X ) ≜
{[x;xπ] | xπ = π(x),x ∈ X} ⊂ Rn+m. It is shown in

Algorithm 1: FNN Graph Set Construction via CZs
Input: CZ domain X , FNN π, a large scalar α
Output: Hπ(X ) = GetNNGraphSet(X ,π, α) as a finite

union of CZs
1 Z1 ← X , Hπ(X )← ∅, n0 ← n;
2 for k = 1, 2, . . . , ℓ− 1 do
3 {AP1

k,AP
2
k, · · · ,AP

sk
k } ← Find AP Candidates;

4 r ← 0;
5 for j ∈ {1, 2, · · · , sk} do
6 ⟨Gk, ck,Ak, bk⟩←HReLU(α,APj

k); // use (2)
7 for Zk,i = ⟨Gi, ci,Ai, bi⟩ in Zk do
8 Ga ← Gk[1 : nk, :]; ca ← ck[1 : nk, :] ;
9 Gb ← Gi[−nk−1 :, :]; cb ← ci[−nk−1 :, :];

10 Aaug ← [diag(Ai,Ak); [−W (k−1)Gb,Ga]];
11 baug ← [bi; bk;W

(k−1)cb + v(k−1) − ca];
12 Haug ← ⟨diag(Gi,Gk), [ci; ck],Aaug, baug⟩;

13 Hk ←
[
In 0 · · · 0
0 · · · 0 Ink

]
Haug;

14 if Hk ̸= ∅ then
15 r ← r + 1; Zk+1,r ← Hk;

16 Zk+1 ← ∪ri=1Zk+1,i;

17 for Zℓ,i ∈ Zℓ do
18 Hπ(X )←Hπ(X )∪ (diag(In,W (ℓ−1))Zℓ,i+[0;v(ℓ−1)])

19 return Hπ(X )

[11, Theorem 1] that G(π,X ) can be represented exactly by
a single hybrid zonotope; however, this representation is often
highly redundant as many binary assignments fail to satisfy the
associated equality constraints. To mitigate this redundancy,
we represent G(π,X ) as a finite union of CZs.

Given an input to π, the activation pattern of π is an as-
signment of a binary value to each neuron, indicating whether
it is active (1) or inactive (0) [15]. Specifically, the activation
pattern of π is defined as AP ≜ [AP1;AP2; · · · ;APℓ−1] ∈
{0, 1}Nπ where APk ≜ [APk,1;APk,2; · · · ;APk,nk

] ∈
{0, 1}nk ; here, APk,j = 1 if z

(k)
j ≥ 0 and APk,j = 0

otherwise, where z
(k)
j is the pre-activation of the j-th neuron

in the k-th layer. For a given APk and a constant α > 0,
the graph set of the vector-valued ReLU function for the k-th
layer, denoted as HReLU(α,APk), represents the relationship
between z(k) and x(k) = ϕ(z(k)) in the [z(k);x(k)] space:

HReLU(α,APk) = P ·
(
×nk

j=1HReLU(α,APk,j)
)

(2)

where HReLU(α, 1) = ⟨[α/2;α/2], [α/2;α/2], ∅, ∅⟩,
HReLU(α, 0) = ⟨[α/2; 0], [−α/2; 0], ∅, ∅⟩, and P is a
permutation matrix satisfying [z1; · · · ; znk

;x1; · · · ;xnk
] =

P [z1;x1; · · · ; znk
;xnk

]. Note that the graph of a scalar
ReLU function over [−α, α] is HReLU(α, 1) ∪ HReLU(α, 0)
in the [z;x] plane. Since affine transformations and Cartesian
products of CZs are closed, HReLU(α,APk) in (2) is also a
CZ, denoted as HReLU(α,APk) = ⟨Gk, ck,Ak, bk⟩.

Algorithm 1 constructs the graph set G(π,X ) using CZs.
The procedure begins by finding all candidate activation pat-
terns for the k-th layer over the input space X (Line 3). This
can be achieved either by exhaustively enumerating all 2nk



possible activation patterns, or by using NN verifiers [16] or
Algorithm 2 in [14] to over-approximate the neuron ranges
and eliminate activation patterns that violate these bounds
from the initial set of 2nk candidates. For each candidate
APj

k, we compute HReLU(α,APj
k) and propagate the layer

transformation from [x(0);x(k−1)] to the [x(0);x(k)] space for
each non-empty CZ Zk,i. This is done by combining Zk,i

and HReLU(α,APj
k) with affine equality constraints (Lines

8-13). The resulting CZ is then projected onto [x(0);x(k)]
to yield Hk. If Hk is non-empty, indicating the activation
pattern is feasible, it is stored and passed to the next layer
(Lines 14-16). The final affine transformation is applied at the
last layer to obtain the final graph set (Lines 17-18). Because
the number of activation patterns is finite, this algorithm is
guaranteed to terminate. Note that α can be arbitrarily chosen
as long as z

(k)
j ∈ [−α, α], thereby preserving the exact graph

set representation.
The following theorem formally proves that Hπ(X ) re-

turned by Algorithm 1 is exactly G(π,X ).
Theorem 1: The output of Algorithm 1, Hπ(X ), is a finite

union of CZs that exactly represent the graph set of π over
the state domain X , i.e. Hπ(X ) = G(π,X ).

Proof: We only provide a proof sketch due to the
space limit. Define H0,k ≜ {[x(0);x(k)] | x(0) ∈
X , [z(j);x(j)] ∈ HReLU(α,APj), z

(j) = W (j−1)x(j−1) +
v(j−1), j = 1, 2, · · · , k}. It is easy to show Hk = H0,k holds
for all k ∈ {1, 2, . . . , ℓ − 1} by induction where Hk is com-
puted by Line 13. From Line 3 and Lines 14-15, all infeasible
activation patterns over X are eliminated. Thus, from Lines 15-
16, Zℓ = ∪ri=1Zℓ,i exactly represents the relationship between
the input x and x(ℓ−1) for all feasible activation patterns. For
the last layer, only the affine transformation in Lines 17-18 is
applied, which yields Hπ(X ) = G(π,X ).

Theorem 1 shows that G(π,X ) can be represented as a
finite union of CZs, where each individual CZ corresponds
to a feasible activation pattern of π over X . Therefore, the
number of CZs in G(π,X ), denoted as nπ , is equal to the
total number of feasible activation patterns of π over X .

The graph set Hπ(X ) returned by Algorithm 1 possesses
useful properties for computing the BRS over-approximation.

Proposition 1: Consider a CZ-represented state domain
X = ⟨Gx, cx,Ax, bx⟩ where Gx ∈ Rn×ngx and Ax ∈
Rncx×ngx . Let Hπ(X ) = ∪nπ

i=1Hπi
≜ ∪nπ

i=1⟨Gπi
, cπi

,Aπi
,

bπi
⟩ be the output of Algorithm 1. For any i ∈ {1, · · · , nπ},

the following properties hold: (i) Aπi
[1 : ncx , :] = [Ax,0],

bπi [1 : ncx , :]=bx, Gπi [1 : n, :]= [Gx,0], and cπi [1 : n, :]=
cx; (ii) ker(Gx)∩ker(Ax) ⊆ ker(Gπi [:, 1 : ngx ])∩ ker(Aπi [:
, 1 : ngx ]) where ker denotes the matrix kernel.

Proof: We provide a proof sketch due to the space limit.
From the construction of Hk (Lines 8-13) in Algorithm 1, it is
easy to check property (i). For (ii), let q ∈ ker(Gx)∩ker(Ax),
then Gxq = 0 and Axq = 0. From Line 12 and Line 13, it
is easy to verify that Gπi

[:, 1 : ngx ] = [Gx;0]. From Line
10 and Line 12, it is easy to obtain that Aπi [:, 1 : ngx ] =
[Ax;−W (0)Gx;0]. Hence, Gπi [:, 1 : ngx ]q = 0 and Aπi [:
, 1:ngx ]q = 0, which proves property (ii).

IV. GOAL-REACHING CONTROL SYNTHESIS USING
BACKWARD REACHABILITY

A. BRS Over-Approximation
In this subsection, we compute PK(T ), the K-step over-

approximated BRS, for the NNCS (1).
Similar to [12], we define the graph set of f over X as

Gf (X )≜ {[x;y] | y = f(x),x ∈ X}. We can use function
approximation techniques, such as Special Ordered Set [17]
or OVERT [18], to construct a finite union of CZs, denoted
as Hf (X ), such that Gf (X ) ⊆ Hf (X ) ≜ ∪

nf

j=1Hfj .
Assumption 1: For all j ∈ {1, 2, · · · , nf}, Hfj ≜ ⟨Gfj ,

cfj
,Afj

, bfj
⟩ satisfies Afj

[1 :ncx , :] = [Ax,0], bfj
[1 : ncx , :

] = bx , Gfj
[1 :n, :] = [Gx,0], and cfj

[1 : n, :] = cx.
Remark 1: Assumption 1 is readily satisfied when Hfj

is constructed in graph-set form using the CZ generalized
intersection operation. For instance, consider a CZ Ĥfj

≜
⟨Ĝfj

, ĉfj
, Âfj

, b̂fj
⟩ constructed by geometrically bounding

the graph of f(x) for any x ∈ X̂ ⊃ X . In this case,
the graph-set over-approximation Hfj

can be computed as
Ĥfj
∩[In,0] X . Applying [6, Proposition 1], we have Afj

=

[[Âfj
,0]; [0,Ax]; [Ĝfj

[1 : n, :],−Gx]], bfj
= [b̂fj

; bx; cx −
ĉfj

[1 : n, :]], Gfj
= [Ĝfj

,0], cfj
= ĉfj

. Let ξfj
=

[ξ̂fj ; ξx]. Then we have Âfj ξ̂fj = b̂fj , Axξx = bx,
and Ĝfj [1 : n, :]ξ̂fj + ĉfj [1 : n, :] = Gxξx + cx. By
reordering ξfj

= [ξx; ξ̂fj
] we equivalently obtain Afj

=

[[Ax,0]; [0, Âfj
]; [−Gx, Ĝfj

[1 : n, :]]], bfj
= [bx; b̂fj

; cx −
ĉfj

[1 : n, :]], Gfj
= [[Gx,0]; [0, Ĝfj

[−n :, :]]], and cfj
=

[cx; ĉfj
[−n :, ]], implying Assumption 1 holds.

The next theorem presents a constructive method for com-
puting the one-step BRS over-approximation of the NNCS (1),
represented as a finite union of CZs. Recall that ngx and ncx

denote the numbers of generators and equality constraints in
X , respectively.

Theorem 2: Given X = ⟨Gx, cx,Ax, bx⟩, let Hπ(X ) =
∪nπ
i=1Hπi

≜ ∪nπ
i=1⟨Gπi

, cπi
,Aπi

, bπi
⟩ be the output of Al-

gorithm 1, and Hf (X ) = ∪nf

j=1Hfj
≜ ∪nf

j=1⟨Gfj
, cfj

,
Afj

, bfj
⟩ be an over-approximation of the graph set Gf (X ),

i.e., Gf (X ) ⊆ Hf (X ). Assume Assumption 1 holds. For
a CZ-represented target set, T ⊂ Rn, define ⟨Gτ , cτ ,Aτ ,
bτ ⟩ = T ⊕ (−BU). Then, the one-step BRS of (1) is over-
approximated by a union of CZs given as:

P(T ) =
⋃

1≤i≤nπ
1≤j≤nf

Hpi,j
≜

⋃
1≤i≤nπ
1≤j≤nf

⟨Gpi,j
, cpi,j

,Api,j
, bpi,j

⟩

where Gpi,j
= [Gx,0,0,0], cpi,j

= cx, bpi,j
=

[bπi
; bfj

[ncx+1, :]; bτ ; cτ−cfj
[−n :, :]−Bπcπi

[−m :, :]], and
Api,j = [[Aπi [:, 1 :ngx ],Aπi [:, ngx+1 :],0,0]; [Afj [ncx+1 :
, 1:ngx ],0,Afj

[ncx+1 :, ngx+1 :],0]; [0,0,0,Aτ ]; [Gfj
[−n :

, 1 : ngx ]+BπGπi
[−m :, 1 : ngx ],BπGπi

[−m :, ngx +1 :
],Gfj

[−n :, ngx+1 :],−Gτ ]].
Proof: For any x ∈ P(T ) ⊂ X , there exist i ∈

{1, · · · , nπ} and j ∈ {1, · · · , nf} such that [x;π(x)] ∈
Hπi and [x;f(x)] ∈ Hfj . Hence, there exists ξπi ∈
B∞(Aπi

, bπi
) and ξfj

∈ B∞(Afj
, bfj

) such that [x;π(x)] =
Gπi

ξπi
+ cπi

and [x;f(x)] = Gfj
ξfj

+ cfj
. From As-

sumption 1 and (i) in Proposition 1, we have Afj
[1 : ncx , :



] = Aπi
[1 : ncx , :] = [Ax,0] and Gfj

[1 : n, :] = Gπi
[1 :

n, :] = [Gx,0]. Therefore, partitioning ξπi and ξfj into
ξπi = [ξπi,1; ξπi,2] and ξfj = [ξfj ,1; ξfj ,2] with ξπi,1 ∈ Rngx

and ξfj ,1 ∈ Rngx respectively yields x = Gxξπi,1 + cx =
Gxξfj ,1 + cx and Axξπi,1 = Axξfj ,1 = bx. Therefore,
ξπi,1 = ξfj ,1 + q where q ∈ ker(Gx) ∩ ker(Ax). Since
ker(Gx)∩ker(Ax) ⊆ ker(Gπi

[:, 1:ngx ])∩ker(Aπi
[:, 1:ngx ])

from Proposition 1, we have Aπi [:, 1 : ngx ]q = 0 and
Gπi [:, 1 : ngx ]q = 0.

Since ξπi
∈ B∞(Aπi

, bπi
) and ξfj

∈ B∞(Afj
, bfj

),
it gives that Aπiξπi = Aπi [ξfj ,1; ξπi,2] + Aπi [:, 1 :
ngx ]q = Aπi [ξfj ,1; ξπi,2] = bπi and Afjξfj =
[[Ax,0]ξfj

;Afj
[ncx + 1 :, 1 : ngx ]ξfj ,1,Afj

[ncx + 1 :
, ngx + 1 :]ξfj ,2] = [bx; bfj

[ncx + 1 :, :]]. In addition, by
Definition 2, P(T ) = {x ∈ X | ∃u ∈ U : fcl(x,u) ∈
T } = {x ∈ X | f(x) + Bππ(x) ∈ T ⊕ −BU}. Since
x ∈ P(T ), there exists ξτ ∈ B∞(Aτ , bτ ) such that f(x) +
Bππ(x) = Gfj

[−n :, :]ξfj
+ cfj

[−n, :] + Bπ(Gπi
[−m :, :

]ξπi
+cπi

[−m, :]) = Gτξτ +cτ . Since ξπi,1 = ξfj ,1+q and
Gπi

[:, 1 : ngx ]q = 0, simplifying the equation above yields
Gfj [−n :, :]ξfj+BπGπi [−m :, 1 : ngx ]ξfj ,1+BπGπi [−m :
, ngx+1, :]ξπi,2−Gτξτ = cτ−cfj [−n :, :]−Bπcπi [−m :, :].
Let ξpi,j

= [ξfj ,1; ξπi,2; ξfj ,2; ξτ ], combining all the equality
constraints above yields that ξpi,j

∈ B∞(Api,j , bpi,j ). In
addition, x = Gxξfj ,1+cx = Gpi,jξpi,j+cpi,j , which implies
x ∈ Hpi,j

. Hence, P(T ) ⊆ P(T ).
Based on Theorem 2, the K-step over-approximated BRS

of NNCS (1) can be computed recursively as follows:

P0(T ) = T , Pt(T ) = P(Pt−1(T )), t = 1, . . . ,K. (3)

The set Pt(T ) in (3) is, by construction, a finite union of
CZs. Since G(π,X ) is defined over the entire state domain
X , which is typically larger than the BRS, some CZ subsets
in Pi(T ) may be empty. These empty subsets are identified
via LPs and removed before propagation to the next time step
to reduce computational overhead.

For the special case where f(x) in (1) is linear, the exact
BRS of (1) can be obtained by the following corollary, whose
proof follows directly as an extension of Theorem 2.

Corollary 1: Consider the NNCS (1) with f(x) = Ax.
Given X = ⟨Gx, cx,Ax, bx⟩, let Hπ(X ) = ∪nπ

i=1Hπi
≜

∪nπ
i=1⟨Gπi , cπi ,Aπi , bπi⟩ be the output of Algorithm 1. For a

CZ-represented target set, T ⊂ Rn, define ⟨Gτ , cτ ,Aτ , bτ ⟩ =
T ⊕ (−BU). Then, the exact one-step BRS of (1) is given by
a union of CZs: P(T ) = ∪nπ

i=1Hpi
where Hpi

≜ ⟨Gpi
, cpi

,
Api

, bpi
⟩, Gpi

= [Gπi
[1 : n, :],0], cpi

= cπi
[1 : n, :], Api

=
[diag(Aπi ,Aτ ); [DGπi ,−Gτ ]], bpi = [bπi ; bτ ; cτ −Dcπi ],
and D = [A,Bπ].

B. BRS Under-Approximation

In this subsection, we compute PK(T ) for the NNCS (1)
by utilizing the sequential linearization technique.

For a given linearization point x∗, the function f is lin-
earized so that the NNCS (1) is locally approximated as:

x(t+ 1) = f̃(x(t),u(t)) + f(x∗)−Atx
∗ +Lt (4)

where f̃(x(t),u(t)) ≜ Atx(t) + Bππ(x(t)) + Bu(t) with
At = ∂f(x)

∂x

∣∣
x=x∗ . The term Lt ∈ Rn in (4) represents

the Lagrange remainder error, where the i-th component is
given by Lt,i = 1

2 (x(t) − x∗)⊤ ∂2fi
∂x2 (ξi)(x(t) − x∗), with

ξi ∈ {λix
∗ + (1 − λi)x(t) | λi ∈ [0, 1]}. Within a convex

input domain XLt ⊂ Rn, the linearization error Lt can be
over-approximated by a zonotope L(XLt

) = ⟨0, |L̂t|⟩ where
|L̂t| ∈ Rn

+ can be obtained by interval analysis [19]. Then,
over domain XLt

, x(t+ 1) can be enclosed as follows:

x(t+ 1) ∈ f̃(x(t),u(t)) + f(x∗)−Atx
∗ + L(XLt

).

The following theorem computes an under-approximation of
the one-step BRS for the NNCS (1). The key idea is to enclose
the linearization error L(XLt

) within a zonotope, enabling the
computation of P(T ) as the BRS of the model x(t + 1) =
f̃(x(t),u(t)) with respect to a suitably shrunken target set.

Theorem 3: Given a CZ-represented X ⊂ Rn, let
Hπ(X ) = ∪nπ

i=1Hπi
≜ ∪nπ

i=1⟨Gπi
, cπi

,Aπi
, bπi
⟩ be output of

Algorithm 1. Given a CZ-represented target set T = ⟨Gτ , cτ ,
Aτ , bτ ⟩ ⊂ Rn, a linearization point x∗, and a zonotopic bound
of the linearization error L(XLt) over a prior set XLt ⊇ P(T ),
a one-step under-approximated BRS of (1) for T is given
as P(T ) ≜ {x ∈ XLt

| ∃u ∈ U : f̃(x,u) ∈ T̃ } where
T̃ ≜ T ⊖ (L(XLt

) + (f(x∗)−Atx
∗)).

Proof: From Def. 2, P(T ) = {x ∈ X | ∃u ∈ U :
f(x) + Bππ(x) + Bu ∈ T } = {x ∈ XLt

| ∃u ∈ U :
f̃(x,u) +Lt + f(x∗)−Atx

∗ ∈ T } ⊇ {x ∈ XLt
| ∃u ∈ U :

∀Lt ∈ L(XLt
), f̃(x,u) + f(x∗)−Atx

∗ +Lt ∈ T } = {x ∈
XLt | ∃u ∈ U : f̃(x,u) ∈ T ⊖ T̃ } = P(T ).

Remark 2: The conservatism of this under-approximation
depends on the tightness of the error bound L(XLt

), which is
determined by the choice of the linearization point x∗ and the
prior set XLt ⊇ P(T ). To reduce conservatism of L(XLt),
x∗ should be chosen near the geometric center of the true
BRS P(T ), and XLt

should approximate P(T ) as tightly as
possible. In practice, we use the BRS over-approximation from
Section IV-A, setting XLt

= □P(T ) as the prior set and
its center as the linearization point, where □ is the interval
hull operator. Moreover, increasing the number of CZs used
to bound the nonlinearity f can reduce the conservatism of the
BRS over-approximation, thereby tightening the error bound
L(XLt

), although this comes at the expense of increased
computational complexity.

The multi-step under-approximated BRS computation for
the NNCS (1) is outlined in Algorithm 2. The procedure
starts by constructing the NN graph set Hπ(X ) over the state
domain X via Algorithm 1 (Line 1). For each CZ subset
Tt,i of the target set Tt, the function Preover() computes an
over-approximated BRS P(Tt,i) of the NNCS (1) based on
Theorem 2 (Line 5). A prior set XLt

is then obtained as
the interval hull of P(Tt,i), and its geometric center x∗ is
computed via center() (Line 6). The one-step BRS of Tt,i,
P(Tt,i), is computed using Theorem 3 and Corollary 1 (Line
7). Subsequently, Pt+1(T ) is computed as the union of P(Tt,i)
for i ∈ {1, 2, . . . , rt} (Line 8), expressed as a finite union of
CZ subsets for the next iteration (Line 9).

Remark 3: In practice, the number of CZ subsets in Pt(T )
may grow rapidly with t. This can be mitigated using a sam-



Algorithm 2: Multi-step Under-approximated BRSs
Input: domain X as a CZ, control bound U as a CZ,

target set T ≜ ∪r0i=1T0,i as a finite union of CZs,
FNN π, a large scalar α, time step K

Output: under-approximated BRSs P1(T ), · · · ,PK(T )
1 Hπ(X )← GetNNGraphSet(X ,π, α)
2 for t = 0, 1, . . . ,K − 1 do
3 Pt+1(T )← ∅;
4 for i ∈ {1, · · · , rt} do
5 P(Tt,i)← Preover(Tt,i,fcl,Hπ(X ),U)
6 XLt

← □(P(Tt,i)); x∗ = center(XLt
);

7 compute P(Tt,i) using Theorem 3 & Corollary 1;
8 Pt+1(T ) = Pt+1(T ) ∪ P(Tt,i);
9 ∪rt+1

i=1 Tt+1,i ← Pt+1(T );
10 return P1(T ), · · · ,PK(T )

pling strategy, such as the farthest-point sampling algorithm
[20] applied to the geometric centers of the CZ interval hulls
to ensure uniform coverage.

C. Goal-Reaching Control Synthesis

We now address the control synthesis part of Problem 1.
From Algorithm 2, the t-step under-approximated BRS is a

finite union of CZs, Pt(T ) = ∪
rt
i=1Tt,i, where each Tt,i is a

CZ. If x(0) ∈ PK(T ), then there exists i0 ∈ {1, 2, . . . , rK}
such that x(0) ∈ TK,i0 . By the construction in Algorithm 2,
a control sequence u(0),u(1), · · · ,u(K − 1) that drives the
NNCS to x(K) ∈ T is guaranteed to exist.

For any CZ subset Tt,i ∈ Pt(T ), where t ∈ {1, 2, . . . ,K}
and i ∈ {1, 2, . . . , rt}, we define its parent as the CZ subset
Tt−1,j ∈ Pt−1(T ) such that Tt,i ∈ P(Tt−1,j), as described in
Lines 7-8 of Algorithm 2. The parent of a CZ is denoted by
Pa(), e.g., Pa(Tt,i) = Tt−1,j . Using this notation, we define
sets R0,R1, . . . ,RK for the initial condition x(0) ∈ TK,i0

iteratively as follows (see Fig. 1 for an illustration):

R0 = TK,i0 , Rt = Pa(Rt−1), t = 1, 2, · · · ,K. (5)

Note that R0 depends on the choice of i0 ∈ {1, 2, . . . , rK},
so the sets R0, . . . ,RK vary with i0. For instance, in Fig. 1,
i0 ∈ {2, 3} if x(0) ∈ T2,2 ∩ T2,3. The control admissible set
for any x ∈ Rt associated with i0 is defined as

U i0
t (x) ≜ {u ∈ U | fcl(x,u) ∈ Rt+1}. (6)

It is clear that U i0
t (x) ̸= ∅ whenever Algorithm 2 returns

non-empty BRSs P1(T ), · · · ,PK(T ), which guarantees the
feasibility of the goal-reaching task. For an initial state x(0) ∈
R0, we can select any u(t) ∈ U i0

t (x(t)) such that x(t+1) ∈
Rt+1 for t = 0, 1, . . . ,K − 1. Since T = RK , it follows that
x(K) ∈ T , the target set.

The minimum-norm control sequence {u(t)}K−1
t=0 can be

synthesized iteratively by solving the following convex opti-
mization problem at each time step t where 0 ≤ t ≤ K − 1:

min
u(t)∈U

∥u(t)∥2 (7)

s.t. f(x(t)) +Bππ(x(t)) +Bu(t) ∈ Rt+1.

Fig. 1. Given an initial state x(0) ∈ T2,2\T2,3 (red star) and a target
set T (yellow region), Algorithm 2 yields P1(T ) and P2(T ) with 3 and
6 CZ subsets, respectively. Since i0 = 2, the sets are R0 = T2,2,
R1 = T1,1, and R2 = T from (5).

Since Rt+1 is a CZ, the constraint above is linear, making (7)
a convex program that can be solved efficiently. Alternatively,
the control sequence {u(t)}K−1

t=0 can be synthesized by solving
a single optimization problem at t = 0:

min
{u(t)}K−1

t=0 ,{x(t)}K
t=1,

1≤i0≤rK

K−1∑
t=0

∥u(t)∥2 (8)

s.t. x(t+ 1) = f(x(t)) +Bππ(x(t)) +Bu(t),

u(t) ∈ U i0
t (x(t)), t = 0, . . . ,K − 1.

Although (8) may be computationally demanding, it becomes
convex when f(x) is linear. Note that π(x(t)) can be ex-
pressed as an affine function of x, since each CZ subset Rt

corresponds to a fixed activation pattern.

V. SIMULATION RESULTS

We present an academic Dubins car example to demonstrate
the effectiveness of the proposed methods. The example is
implemented in MATLAB R2022a and run on a desktop
equipped with an Intel Core i9-12900K CPU and 32 GB of
RAM. The code is available at https://github.com/
wisc-arclab/goal-reaching-control-of-nncs.

Consider the discrete-time Dubins car model:
px(t+ 1) = px(t) + 0.1 cos(θ(t)),

py(t+ 1) = py(t) + 0.1 sin(θ(t)),

θ(t+ 1) = θ(t) + 0.1π(x(t)) + 0.1u(t),

where x = [px, py, θ]
⊤ denotes the state vector consisting

of the horizontal coordinate, vertical coordinate, and heading
angle. The nominal controller π is a ReLU-activated FNN
with hidden layers of size [5, 5], trained to approximate a
nonlinear MPC controller, and u is the corrective control
input to be synthesized. We choose the state domain as
X = [−2, 2] × [−2, 2] × [−π, π], the input domain as
U = [−0.5, 0.5], and the target set as T = [0.95, 1.05] ×
[0.95, 1.05] × [π/4 − 0.1, π/4 + 0.1]. We use the functional
decomposition technique in [21] to construct Hf (X ), which
ensures Assumption 1 holds. For K = 3, we compute the over-
approximated BRSs P1(T ),P2(T ),P3(T ) via Theorem 2,
and the under-approximated BRSs P1(T ),P2(T ),P3(T ) via
Algorithm 2. With the cost L =

∑2
t=0 |u(t)|2, we synthesize

the control sequence u(0), u(1), u(2) by solving (8). The
left plot in Fig. 2 shows the sets P1(T ),P2(T ),P3(T ) and
P1(T ),P2(T ),P3(T ). Initial states are sampled from P3(T ),

https://github.com/wisc-arclab/goal-reaching-control-of-nncs
https://github.com/wisc-arclab/goal-reaching-control-of-nncs


Fig. 2. (left) The px-py plane projection of the target set T , over-approximated BRSs P1(T ),P2(T ),P3(T ), under-approximated BRSs
P1(T ),P2(T ),P3(T ), and state trajectories with initial condition sampled from P3(T ). (middle) Under-approximated BRSs and state
trajectories with and without the control sequence u(t) synthesized by (8) in 3D space. The state trajectory with u(t) = 0 fails to reach the
target set T , whereas the trajectory with u(t) synthesized from (8) successfully reaches T . (right) Projection onto the px-py plane showing under-
approximated BRSs P1(T ), . . . ,P10(T ), parent CZs R0, . . . ,R10, and the state trajectory with u(t) synthesized from (8).

and the corresponding state trajectories under the synthesized
control sequence are simulated. All trajectories reach the target
set T , thereby validating the correctness of the goal-reaching
control sequence.

For the initial state x(0) = [−0.95, 1.1,−0.5]⊤ and
time horizon K = 10, Algorithm 2 produces the sets
P1(T ), . . . ,P10(T ), with 3 CZ subsets of P10(T ) containing
x(0). The control sequence is synthesized by solving (8) with
L =

∑9
t=0 |u(t)|2. The middle plot in Fig. 2 illustrates the

under-approximated BRSs and the state trajectories with and
without the controller synthesized by (8) in 3D space. It is
evident that the state trajectory with u(t) = 0 fails to reach the
target set T since x(10) /∈ T , whereas the trajectory with u(t)
synthesized from (8) reaches the target set T since x(10) ∈ T .
The right plot in Fig. 2 shows the under-approximated BRSs,
parent CZs, and the state trajectory with u(t) from (8), all
projected onto the (px, py) plane.

VI. CONCLUSION

We proposed a CZ-based backward reachability analysis
framework to address the goal-reaching control synthesis
problem for NNCSs. The method constructs both over- and
under-approximations of the BRS, enabling the synthesis of
control sequences with formal feasibility guarantees. Simu-
lation results demonstrated that the synthesized controls suc-
cessfully drive the system to the target set, which validates the
effectiveness of the proposed approach.
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